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PREFACE

The present work is devoted to some mathematical theories which -
all of them may claim to belong to the domain of “linear analysis”.
It will, however, be clear that it is impossible to comprise everything
that might deserve to be so designated into a book of moderate size.
The central and larger part of the book (Ch. 6—12) is formed by an
introduction to Banach space and Hilbert space, and to some aspects
of the theory of bounded and compact linear transformations in these
.spaces. In order to have at hand non-trivial examples by which to
illustrate this theory, the necessity arises to make an appeal to such
notions as Lebesgue measure and integral, and Lebesgue function spaces
L,. It is to a concise discussion of these subjects, complete in itself but
leaving aside everything which is unessential for the applications in
question, that Part I (Ch. 1—5) is devoted. The emphasis is on the
algebraic aspects of measure and integral, and topological notions are
-only introduced when discussing special examples such as Lebesgue or
Stieltjes integrals. I wish to express my gratitude to Prof. N. G. de Bruijn
for the free use I could make of his lecture notes on measure and integral.
The study of these notes led to the dominant part played by semirings
in Chapter 2, and to the definition of the integral as a product measure
in the product space of the underlying measure space and the straight
- line. Furthermore it will' appear on comparison with the standard
* 'treatises of Halmos (Measure Theory, New York, 1950) and Saks (Theory
of the Integral, Warsaw, 1937) that they have not failed to leave their
marks in the present discussion. In Chapter 5 we introduce besides the
Lebesgue spaces L,(1 < $ < oo), their generalizations: the Orlicz
spaces Ly. Most of the properties of spaces L, may be carried over to
spaces Lg, although several proofs need some modification. As a rule the
proofs in question gain thereby in transparency, since a certain amount
of juggling with conjugated exponents p and g is replaced by more
straightforward arguments.

After defining Banach and Hilbert space in Chapter 6, and deriving
their most obvious properties, Chapter 7 is devoted to a first study of
bounded linear transformations in Banach space, although closed, possibly
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unbounded, linear transformations are not altogether forgotten. B_ounde(i
linear functionals, their extension, the first and second adjoint trans-

formations, weak convergence and projections are among the subjects »
@

which receive attention. Chapter 8 deals with linear transformations in
a space of finite dimension (rank and nullity, characteristic values,
canonical form of a matrix, elementary divisors), and Chapter 9 with
bounded linear transformations in Hilbert space (unitary, self-adjoint,
“normal and symmetrisable transformations, projections, Fredholm
theory for transformations of finite double-norm). The spectral theory
of bounded normal transformations has not been included; since' there
exist several treatises containing an excellent discussion of this subject -
(cf. the references in Ch. 6, § 1). In Chapter 10 the mutual relations
between the ranges and null spaces of a bounded linear transformaif}'pn
and its adjoint are discussed, and we introduce resolvent and spectrum,
while Chapter 11 gives a rather thorough account of compact linear
transformations in Banach space (Riesz-Schauder theory, resolvent, "
algebraic multiplicity of characteristic values, mean ergodic theorems).
Finally, in Chapter 12, the last chapter of Part II, we consider compact
transformations in Hilbert space which are either self-adjoint, normal or
symmetrisable (expansion theorems, minimax theorems, perturbation
theorems). The reader who is not interested in symmetrisable trans-
formations, will find some advice on how to read this chapter in §1.
Examples illustrating the abstract theory, are scattered through
the text, and more of them may be found at the end of each chapter,
Part III (Ch. 13—17) deals with non-singular linear integral equations,
that is, with the Fredholm theory and spectral theory of linear integral’
transformations one of whose iterates is compact. In Chapter 13, which
may be read, if one wishes, immediately after Chapter 11, the Fredholm

theory is lifted out of the Ly-sphere, wherein it was imprisoned until- .

rather recently, and placed in more natural surroundings: the Lebesgue
spaces L, and the Orlicz spaces L. In Chapter 14 equations with normal,
Hermitian or positive definite kernels are discussed, and the remaining
chapters, finally, deal with equations having a symmetrisable kernel.
Anyone who has ever taken note of what Hellinger and Toeplitz in their
“Encyklopédie” paper of 1927 say about equations with symmetrisable
kernels, will know that the state of affairs at that time was rather un-
satisfactory. We cite: “Der wesentlichie Mangel dieses ganzen allgemeinen

Ansatzes ist aber das Fehlen der eigentlichen Entwicklungssitze”, and

““... der Ansatz der symmetrisierbaren Kerne in seiner formalen Allge-
meinheit ins Unbestimmte greift”’. Fortunately, it has been proved

:
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since 1927 that the situation is not so bad as one might infer from these
quotations. There exist expansion theorems in the case of a general
symmetrisable kernel (Marty kernel), although of a slightly different
nature than in the case where we have to do with a Hermitian kernel.

'The knowledge required for a proper understanding’ of the contents
of the present work, does nowhere, with one exception, go beyond the
elements of ordinary analysis (determinants and linear equations,
continuity, Riemann integral, ordinary and uniform convergence of
series, complex numbers, simple properties of power series). The ex-
ception is in Ch. 13, § 14, where we use a theorem on entire functions
which lies somewhat deeper.

The conventions on cross references are as follows: by §4, Th.2 is
meant §4, Theorem 2 of the chapter in which the reference occurs,
and by Theorem 3 is meant Theorem 3 of the paragraph in which the -
teference occurs. Numerals in square brackets refer to the list of bi-
bliographical references at the end of each chapter. No claim to com-
pleteness is made with regard to these lists. The idea is merely to il-
lustrate some striking points in the text by a name and a date. Part I,

being of an introductory nature, contains no bibliographical references.
© Al suggestions from readers which might lead to future improvements
in the text will be very welcome.

My sincere thanks are due to the editors of the “Bibliotheca Mathe-
matica” for their invitation to publish this book in their series. Further-
more, I wish to express my gratitude to Prof. H. D. Kloosterman who
eritically examined part of the manuseript, and to W. A. J. Luxemburg
who assisted in the proof reading. :

Delft, May 1953 A. C. ZAANEN
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ORLICZ FUNCTIONSPACES Ly






CHAPTER |

POINT SETS. EUCLIDEAN SPACE

§ 1. Definitions and Some Simple Properties

We consider a szt X, the elements #,y, ... of which will be called
points. If A4 is a subset of X, we write x € 4 in case the point x is an
element of 4. Hence x € X for every point x. Given two subsets 4 and B
of X, we write 4 C B or, equivalently, BD A when A4 is a subset of
B, in other words, when every point of 4 is also a point of B. In particular
A C A for every set A. The empty set, that is, the set containing no
points at all, is denoted by 0, and this set is considered to be a subset
of every subset. Hence 0 C 4 for every 4 C X.

Given a sequence (finite or infinite) A,(» = 1,2, ...) of sets (we
shall not repeat every time that all point sets considered are subsets of X),
we call sum, or union, of these sets and denote by £ 4,,or A; + 4,4+ ...,
the set of all points belonging to at least one of the 4,. We call product, or
iniersection, and denote by I14,, or 4,4, ..., the set of all points be-
longing at the same time to all the 4,. Given two sets A and B, the set
of all points belonging to 4, but not to B, is called the difference of A and
B, and denoted by 4 —B. By A — B —C we mean (A —B)—C.

If the sequence 4, is infinite, the set of all points x such that xe 4,
holds for an infinity of values of » is called the upper limit of A,, and
denoted by lim sup 4 ,. The set of all points x belonging to all the sets 4,
from some 7, onwards (n, may vary with x) is called the lower limit
of the sequence and denoted by lim inf 4,. Obviously lim inf 4, C lim
sup 4,. Whenever lim inf 4, = lim sup 4, (4 = B for two sets 4 and
B means that 4 C B and B C 4 hold simultaneously), the sequence 4,
is said to be convergent; lower and upper limit are called lmsf, and
denoted by lim A4,.

Theorem 1. limsup A, = II3_, 2:';,‘ A4,.

Proof. Let xelimsup 4,. Then xeXy , A, for every k, hence

xellP =2 A,
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Let conversely xe Il ; I3, A,. Then xeXy_, 4, for every &, .
which shows that x € 4, holds for an infinity of values of #. Hence
x € lim sup 4,

Theorem 2. lminf A, = E 113 . A,.

Proof. Let xeliminf A,. Then there exists a positive integer %, such

that xe 4, forn > ko Hence x eIl A,, whichimpliesxeZg> 11, 4,
Let conversely x e Z7°., II7_ ;. A,. Then x e II3., A, for at least one

index %, hence x€ 4, for n > k or xeliminf 4.

If, for a sequence 4, of sets, 4, C A, for all #, the sequence is called
ascending or non-decreasing; if A,,, C A, for all n, the sequence is called
descending or non-increasing. Ascending and descending sequences are

said to be monotone.

Theorem 3. 1°. A monotone (infinite) sequence is comvergent.
2° limA,=2X A, for an ascending sequence. '
3°. lUmA, =14, for a descending sequence.
Proof. 1°. We have to prove that limsup 4, Climinf A,. Let us
assume, for this purpose, that x € lim sup 4, so that x € 4,, holds for
an infinity of values of #. If now the sequence 4, is ascending and #,
is the smallest index # for which x € 4, holds, then x € 4, for n > #n,,
and hence x € lim inf 4,. If, on the other hand, the sequence 4, is des-
cending and x € 4, for a certain %, then x € 4, for » < k. Hence, since
x¥.€ A; holds for infinitely many %, we have x € 4, for all #, so that
certainly x € lim inf 4,,.
2°. If the sequence 4, is ascending, we have
imA4, =liminfd, =32 113 , 4, =32, A,.
3°. If the sequence A, is descending, we have .
limd, =limsupd, =2 Z3 A, =1, 4,

If A is a subset of X, the set X — A4 is called the complementary set or,
shortly, the complement of A, and is sometimes denoted by A’. Evidently
X' =0,0=2X, (4') = A4, and 4 C B implies 4’ D B".

Theorem 4. Wehave A— B = AB'.
Proof. We have xe 4 — B if and only if x € 4 and x € B’ hold simul-

taneously.
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Theorem 5. Wehave I1 A, = (T A) andZ A, = (11 4,
Proof. We have xeIl 4, if and only if x € A," holds for no value of #,
hence, if and only if x € (T 4,)".

We have xeZ A, if and only if x € A, does not hold for all values ofin,
hence, if and only if x € (11 4,) .

Theorem 6. We have lim sup A, = (lim inf A)) and liminf A, = (lim
sup A,). -
Proof. Similar to that of the preceding theorem.

Remark. The set A — B is called the complement of B relative to 4.
It is easily seen that, if all sets 4, are contained in 4, the Theorems 5
and 6 remain true also if all complements are taken relative to 4 (4

takes over the part of X).

The function of a point, equal to one at all points of a set A, and to
zero at all pointé of A’ = X — A, is called the characteristic function
¢ 4(2) of A, Evidently, if 4 = X 4, and AA; =0 (i #j), that is, if no
two of the sets A, have common points, then ¢(x) = T c4,(x). If the
sequence 4, is monotone, the sequence of the characteristic functions is
(for every point x) also monotone, non-decreasing if 4, is ascending and
non-increasing if 4, is descending.

Theorem 7. If imsup A, = P and liminf A, = Q, then
cp(x) = lim sup c4,(%),
co(x) = him inf c 4,(x).

Proof. We have cp(x) = 1 if and only if x € 4, holds for infinitely
many values of #, that is, if and only if ¢ 4,(%) = 1 for infinitely many
values of #. Hence cp(x) = 1 if and only if lim sup c4,(x) = 1. Since both
¢p(x) and lim sup c,(x) can only assume the values zero and one, the
relation cp(x) = lim sup c4,(x) holds for all x.

We have cy(x) = 1 if and only if there exists an index 7, such that
xe A, for n > n,, that is, if and only if c4,(x) = 1 for n > n,. Hence
co(¥) =1 if and only if lim inf c4,(x) = 1. Since both cy(x) and lim
inf c4,(x) can only assume the values zero and one, there is equality for
all «.
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Theorem 8. The sequence A, converges to the set A if and only if
lim ¢ 4,,(%) = ¢ 4(%). '

Proof. Let A = lim 4,, so that, with the notations of the preceding
theorem, P = A = Q. Then

. lim sup c4,(%) = cp(#) = c4(%) = co(x) = lim inf ¢4, (%),

hence ¢ 4(x) = lim ¢ 4,(%).
Let now conversely ¢ 4(x) = lim ¢ 4,,(x) = lim sup ¢ 4,(*) = lim inf ¢ 4,(¥).
so that ¢ ,(¥) = cp(x) = co(x). Then 4 = P = @, hence 4 = lim 4,.

A function f(x), assuming only a finite number of different (real or
complex) values on X is called a simple. function. If these values are
@, ..., %, and the set on which the value «; is taken is denoted by
AGi=1,...,p), then X = 3P | A, where no two of the sets 4, have
common points, and f(x) = ZF_; a;c.4,(%).

-

§ 2. Euclidean Space

By Euclidean space of m dimensions R,, we mean the set of all systems
of m real numbers (x,, %3, ..., ¥,). The number x, is called the k-th
coordinate of the point x = (%, %5, . .., X,,). Obviously all notions in-
troduced in the preceding paragraph, may be applied to point setsin
R,.. We shall introduce here some further conceptions in which the
distance p(¥, y) between two points x and y of R, plays a part.

The distance p(x, y) between x = (%, X, . . ., ¥p) a0d y=(Yy, Yg, - - -» Ym)
is defined as the non-negative number

[(xl o yl)z . (xz - yz)z + ... e (xm o ym)z]llg'

The space R, is also termed straight line and the space R, plane. In
R, the distance p(%, y) is simply | x —y |[.

If E is a subset of R,,, the upper bound (also called lowest upper bound;
abbreviation Lu.b.) of the numbers p(x,y) subject to x€E and ye E
is the diameter of E, and is denoted by 3(E). If §(E) is finite, the set E
is called bounded. For a collection M of sets, the upper bound of §(E) for
all sets E belonging to M is called the characteristic number of M. By
the distance p(x, E) of a point x and a set E we mean the lower bound
(often called greatest lower bound; abbreviation g.1.b.) of p(x, y) for all
y € E, and by the distance p(E,, E,) of two sets E, and E, the lower bound
of p(x, ) for x running through E,; and y through E,.
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If » > 0 is given, the set of all points y such that p(x, y) < is called
the (spherical) meighbourhood of x with radius 7. A point x is called a
point of accumulation of a set E when every neighbourhood of » contains
infinitely many points of E. It is not necessary, therefore, that x itself
belongs to E. This definition is equivalent to the definition that x is
a point of accumulation of E when every neighbourhood of x contains
at least one point of E different from x. All points of E that are no points '
of accumulation of E are said to be ssolated points of E. The set E* of
all points of accumulation of E is the derived set of E. If E+ is contained in
E, the set E is termed closed. For every set E, the set E+ is closed. Indeed,
let x be a point of accumulation of E+. We have to prove that x € E*+.
If » > 0 is arbitrarily given, there exists a point y € E* in the neighbour-
hood of x with radius 7/2. Consider now a neighbourhood of y with radius
smaller than 7/2. This neighbourhood contains, on account of y € E¥,
an infinity of points of E. Since moreover it is whelly contained in the
neighbourhood of x with radius », we have proved that infinitely many
points of E are lying in the latter neighbourhood, and this shows that
xeE+.

A point x is called limat of a sequence of points x, when lim p(x, x,) = 0.
We write x# = lim x,,, and the sequénce x,, is said to be converging to x.
Obviously, by the definition of distance and by Cauchy’s Theorem, the
sequence x, is convergent if and only if lim p(x,, x,) = 0 as p, ¢ > 6o.
Furthermore, it is evident that the limit of a convergent sequence with an
infinity of different points belonging to a set E is a point of accumulation
of E.

If two points a = (@, s, - .., @n) and b= (b, by, ..., b,) in Rp
are given, and if @, <b; for 6=1,2,...,m, we call closed interval
[@y, by} ..} Gm) bm] the set of all points (%, %y, ..., %m) such that
a, < %, < by for k=1,2,...,m. If we replace a; < %; < b by
A < % < bpora, < x; <byora, <z, < by, we obtain the definition
of open interval (ay, by; ...; Am, ba) OT interval right opem [ay, by; ...;
@, bm) OT interval left open (ay, by; ...; @m, b respectively. In what
follows we shall mean by interval a closed interval, whereas an interval
left open will be called a cell.

Theorem 1 (Theorem of Bolzano-Weiersirass). Every bounded set in
R, containing an infinity of points has at least one point of accumulation.
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Proof. If E is the set in question, it is contained in an interval V.
Dividing V, into 2™ congruent non-overlapping intervals, such that
the diameter of each of these intervals is 8(V,)/2, one at least of these
intervals, say V,, contains an infinity of points of E. Repeating this

. process, we obtain a descending sequence of intervals V,(n= 1,2, ...)
such that each V,, contains infinitely many points of E and lim §(V,) = 0.
This implies that, if V, = [a{,b";...;aQ’, b{™], the sequence of
numbers a{’, af’, ... is non-decreasing, the sequence B P o 38
non-increasing and lim (b —a{®) =0 for k=1, ...,m. We may
conclude therefore that x, = lim af¥ = lim b{™ exists fork =1, ..., m.
The point x = (%;, %3, ..., ¥m) is NOW 2 point of accumulation of E.

Indeed, since evidently x € V, for all #» and lim 8(V,) = 0, the
intervals V, are contained in an arbitrary neighbourhood of «x for n
sufficiently large, so that an infinity of points of E is lying in this
neighbourhood.

§ 3. Open and Closed Sets

We consider a subset 4 of the Euclidean space R,, and a set E con-
tained in 4. Let E;, = A — E be the complement of E relative to 4,
and x a point of 4. Then x is called an internal point of E (relative to 4)
whenever p(¥, E,;) > 0, # is called an external point of E (relative to 4)
whenever it is an internal point of E (that is, whenever p(#, E) > 0),
and x is said to be on the boundary (relative to 4) of E and also on the
boundary of E, whenever it is neither an-internal nor an external point
of E, that is, whenever p(, E) = p(x, E) = 0. Evidently every set
can only contain internal points and points on its boundary.-

The set E is called closed (relative to 4) when it contains its boundary
(relative to A). The set E is called open (relative to 4) when it contains
no point of its boundary (relative to 4), that is, whenever it contains
only internal points (relative to 4). The boundary of 4 itself is con-
sidered to be empty, and A4 is therefore closed as well as open relative
to itself. ‘

We may replace the set 4 in these definitions by the whole space
R,,, and it is easily seen that a set E is closed in the sense described earlier
(E is closed whenever E+C E) if and only if E is closed relative to R,,.
Indeed, let us assume first that E+ C E, and let x be on the boundary
of E. Then p(x, E) = 0, which shows that either x € E or x € E*, so that
on account of E+C E we find x € E in any case. The set E contains
therefore its boundary. Conversely, if E contains its. boundary and
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xe kY, then p(x, E) =,0' SO that"a; is an 'intemal point of E or on its
boundary; hence x € E in any case. This implies E* C E.

Theorem 1. The set E C A is closed relative to A if and only if its com-
plement Ey = A — E 1s open relative to A. '
Proof. Follows immediately from' the definitions.

Theorem 2. Sum and product of ‘@ finite number of open sets are open.
Sum and product of a finite number of closed sets are closed.
Proof. 1°. Let x €X O,, where all O, are open. Then x€ 0, for at least
one #, and with the point x a whole neighbourhood of % (as far as this
neighbourhood is contained in the set A4, relative to which 0, is open)
is contained in the set O,. This neighbourhood is therefore also contained
in ¥ 0,, in other words, % is an internal point of X O,. It follows that
¥ 0, is open. ; ,

2° Consider two open sets O;-and O, with complements 0, and O,
(relative to a set 4 or to the whole space R,,). If x is a point ‘of 0,0,,
then p(%, 0;) > 0 and p(%, Oz) > O, hence o(x, 0; + 0,) > 0 or, since
0; + 0, = (0,0,)" by § 1, Th. 5, e{x, (0,0,)'} > 0. This shows that x is
an internal point of 0,0,, so that, 0,0, is open. The extension to the
product of more than two open sets is evident. ’

3°. If F,, ..., F, are closed sets, the complemerits - F, are
open, so that, by what we have already proved, %, F; is also open,
This implies that =i, F; = (M, F;)" is closed.

4°. If once more F, ..., F, are closed, then Xi_, F, is open, so that

n  F,= (S}, F;)" is closed..
Theorem 3. The sum of an enwmerable infinity of open sets is open, and
the product of an enumerable infinity of closed sets 1s closed.
Proof. In order to prove the first statement, we have only to repeat the .
proof of the first part of the preceéding theorem.

Let now F,, F,, ... be closed. Then their complements 48 Fgs o
are open, so that %32, F; is also open. Hence its complement II32, F;

is closed.

Remark. The sum of an enumerable infinity of closed sets is not neces-
sarily closed. Considering for example the sum of all points with rational
coordinates in the linear interval [O, 1], we have a sum of closed sets
which is not closed itself. It follows that the product of an enumerable
infinity of open sets is not necessarily open.



10 POINT SETS. EUCLIDEAN SPACE CH, 1

Theorem 4. If the sets F, and F, are closed relative to the whole space R,,
and have no common points, while one at least of them, say F;, is bounded,
then o(F,, F,) > 0.
Proof. Let us suppose that p(F,, Fy) = 0. Then there exist two se-
quences of points %, € F; and y, € Fy such that lim p(%,, ¥,) = 0. The
set F, being bounded, the sequence x, contains, by the Bolzano-Weier-
strass Theorem, a subsequence z,(z, = %,, 2 = %,, ...) converging
_ to a point z. Hence, if £, is the corresponding subsequence ot y,, we have
lim p(z, z,) = 0 and lim p(z,, #,) = 0. Since p(z, £,) < p(2, 2x) + 2(Zn> tn)>
this implies lim p(z, ¢,) = 0. From lim p(2, 2,) = 0, z, € F, it follows now
that z e F,, whereas lim p(2, ¢,) = O, ¢, € F, shows that z€ F,. This is
impossible, 7, and F, having no common points. Hence p(F,, F,) > 0.

~ Remark. If neither F; nor F, is bounded, the theorem is not neces-

sarily true, e.g. in the two-dimensional case that F, is the set of all points -
(x,y) such that x <0, ¥y > — 2~ and F, is the set of all points (¥, y)

such that x > 0, y > »~L. '

§ 4. Nets. Decomposition of an Open Set

If A is a closed interval in R,,, we call net of closed intervals on A any
sequence of closed non-overlapping intervals whose sum is identical with -
A. By net of cells on R,, we mean a sequence of cells no two of which have
common points and whose sum covers R,,. A sequence N, (¢ = 1,2, ...)
of nets is called regular if each interval of N, is contained in an interval
of N and if the characteristic number of N; (cf. § 2) tends to zero as

k — oo.

Theorem 1. A set E, which is open relative to a closed interval A, is the
sum of a sequence of closed nom-overlapping intervals. A set E, which is
open relative to R, is the sum of a sequence of cells without common poinis.
Proof. Let E be open relative to A, and let N, be a regular sequence
of nets of closed intervals on A, such that every net IV, contains only a
finite number of intervals. Let, furthermore, M,; be the sum of those
intervals of IV, that lie in E, and let M,;, for 2 > 2, be the sum of those
intervals of N, that lie in E, but not in any of the preceding M (! < %).
Since the characteristic number of N, tends to zero and E is open, the
enumerable collection of intervals £ M, covers E.

Given a set E, open relative to R,,, we may repeat the proof for cells



§5 . THE HEINE-BOREL-LEBESGUE COVERING THEOREM H

without common points, usmg now a regular sequence of nets of cells
on. R ; : 4

§ 5. The Heine-Borel-Lebesgue Covering Theorem

It is sometimes convenient to knéw under what conditions a point set
which is covered by an infinity of other point sets, may already be covered
by a finite number of these sets. The theorem which follows now gives
sufficient conditions for this situation to arise.

Theorem 1 (Heine-Borel-Lebesgue Covering Theorem). Let F be a set,
bounded, and closed relative to R,,, and let S be a collection of sets, open
relative to R, and such that every point of F belongs to one at least of them.
Then F 1is covered by a finite number of the open sets of S.

Proof. Since F is bounded, there exists a closed interval A containing F.
The set A — F is open relative to A, which implies that every point of
A — F is an internal point of a set O, open relative to R,, and having
no points in common with F (we may take for example O = 0, —
where 0, is an open interval containing A). Adding this open set O to
the collection S, we obtain a collection T of open sets. Evidently every
x € A is a point of at least one of the sets (T). In order to show now that F
is covered by a finite number of the sets (S), it is clearly sufficient to
prove that A is covered by a finite number of the sets (7). For this
purpose we consider a regular sequence N, of nets of closed intervals on A,
each net N, containing only a finite number of intervals. The theorem
will be proved once we have shown the existence of an index % such that
each of the finite number of intervals of NV, is contained in a set (7).
If such an index % did not exist, we could take for every value of %2 an
interval A, of N,, not contained in a set (7). The centres x, of the inter-
vals A, (whose diameters tend to zero) would have, in virtue of the
Bolzano-Weierstrass Theorem, at least one point of accumulation x
belonging to A, and in every neighbourhood of x there would be con-
sequently an interval A, not covered by a set (I'). This however is im-
possible since # is an internal point of one of the sets (T').

EXAMPLES

1) In § 2 we have used that if x, ¥ and z are three arbitrary points in Euclidean
space R,,., then p(%, ¥) < p(#, 2) + p(y, 2). Prove this inequality.
(It is no restriction of the generality to suppose that z has all its coordinates
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equal to zero. From ab < (a* + 5%)/2, holding for a, b > 0, we derive, taking
a =% |[(ER, b=|yI/(Sy)" and summing over i, that Z|xy¢|<
(= 42.Z 93)"». Hence, replacing y; by #; — s
2r9) =S m—y)P0 < Elnldn—vl+ZInllxn—yl<
UE A + (T (2 (5 — 29"

from which the result follows). ,

2) In connection with the Heine-Borel-Lebesgue Covering Theorem, it may
be proved that in each of the following cases the set T is not covered by a finite
number of sets of the collection S: : ;

(a) T is the open interval (0,1), S is the collection of all open intervals (x, 1)
such that 0 < » < 1. :

(6) T = R, (the whole straight line), S is the collection of all open linear
intervals.

(¢) T is the set consisting of the points %,, #;, %3, - - -, where zy = 0, ¥, = 1/n
(m = 1,2, ...), Sis the coliection of all sets X, where X, consists of the point
x, only.



