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Preface

There is an extensive literature devoted to numerical methods of solving
extremal problems. The central position in it is occupied by studies relating to
actual algorithms for optimization—their description, range of applicability,
rate of convergence. There are also a number of papers on empirical
comparison (based on examples) of the effectiveness of algorithms, with a view
to selecting the ‘best’ method from the existing arsenal of such methods.

Far less attention has been paid to questions such as the following. What, in
general, can be expected from numerical methods of solving problems of a
given type? What are the potentially attainable limits of these methods? How
complicated are problems of one sort or another, not with respect to a given
concrete method, but in relation to ‘all (in general)’ methods of solution? It is
this natural question of the ‘potentially attainable effectiveness of numerical
methods applied to problems of a given type’ which forms the subject of
investigation in this monograph.

A typical question which we shall consider is of this form. Given a family of
optimization problems together with a source of information, accessible to the
methods, about each solvable problem of this family, what are the potential
lower bounds of laboriousness of all possible methods which solve all
problems of the family with a given accuracy? Which method realizes this
potential lower limit and is therefore the best one? Clearly, a precise
formulation of such a question requires a formalization of the concepts of
‘method’, ‘laboriousness of a method’, etc. We fix a definite formalization of
this kind (in our opinion, the most convenient formalization for studying the
‘continuous’ mathematical programming problems with which we shall be
concerned), and we then investigate the question posed above as applied to a
number of the standard non-linear programming problems: smooth multi-
extremal problems, ‘all convex’ problems, strongly convex problems, and so
on. In most cases a sufficiently conclusive answer is successfully obtained to
the question in which we are interested.

We do not claim that the formalization we have adopted of the problem of
selecting the best possible numerical method of optimization is entirely
adequate to represent the full content of the original formulation. There is no
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X Preface

need to dwell now on this aspect of the matter, since a full motivation of the
approach we have adopted and a discussion of its merits and limitations are
given in Section 1.1. We remark only that, in our opinion, the formalization
we have adopted enables rather useful, if rough, information (orders of
magnitude only) to be obtained about the potential possibilities of numerical
methods of solving extremal problems of the standard types. It is up to the
reader to share or repudiate this opinion.

Another question closely related to that of finding potential lower bounds
for the laboriousness of methods which solve problems of a given class with a
given error, i.e. with the problem (as we have defined it) of computing the
‘complexity’ of a class, is the question of estimating the effectiveness of one or
other method of solving problems of this class. It is natural to define this
effectiveness as the inverse of the ratio of the laboriousness of the method in
question to a ‘standard laboriousness’, i.e. to the complexity of the class. The
effectiveness of a method shows to what extent it can be improved as regards
laboriousness, i.e. to what extent it is non-optimal.

We touch on only a small part of the problem of estimating the effectiveness
of traditional numerical methods of optimization. This is understandable; to
solve this problem it is not sufficient merely to have available a standard of
effectiveness (basically our efforts are concentrated precisely on obtaining
such a standard); it is further necessary to have estimates of the laboriousness
and error of the method in which we are interested on the class of problems
under consideration. The profusion of standard numerical methods obviously
precludes the possibility of the authors’ being able to estimate these
characteristics for some arbitrary representative of the group of methods.

In this book the effectiveness of some of the most natural and simple
methods is evaluated. For reasons which will become clear later, all these
methods are the methods of convex programming. Of the methods of non-
smooth convex programming, we evaluate the gradient method and the Kelly
method (these might be said to exhaust the list of traditional algorithms for
non-smooth convex optimization). The extensive field of algorithms for the
minimization of smooth and (strongly) convex problems is examined to a far
less extent; here we restrict our attention to the gradient method with
minimization in the anti-gradient direction and to some simple versions of the
method of conjugate directions. The methods considered for strongly convex
programming problems turn out to be inefficient; they are unnecessarily
sensitive to the degree of conditionality of the problem under consideration,
and their effectiveness tends to zero as the conditionality deteriorates. We
remark that negative results of this kind also enable certain conclusions to be
drawn regarding the effectiveness of a number of traditional methods which
are not explicitly considered in this book.

Let us give an example. An extensive family of methods of feasible
directions for solving constrained convex problems is known. The rate of
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convergence of these methods is generally estimated under the hypothesis of
strong convexity of the problem under solution. Thus it is natural to study
these methods on the class of strongly convex problems. In Chapter 7 it is
shown that the complexity of this class is determined essentially only by the
required accuracy, the conditionality of the problem, and its dimension, but
not by the number of constraints. On the other hand, if there are no
constraints, then most versions of the method of feasible directions turn into
the method of gradient descent with minimization in the direction of descent.
So the effectiveness of the methods of feasible directions cannot be essentially
greater than that of the gradient method, and therefore it too tends to zero as
the conditionality of the problem deteriorates.

The limited size of the book does not allow us to dwell on consequences of
this sort; they will certainly be self-evident to the reader. We remark further
that the judgement expressed previously about the method of feasible
directions being ineffective (like similar statements in the main text) is a
judgement made on the basis of the definition of laboriousness which has been
adopted and which turned out to be not quite adequate for the intuitively
understood computational complexity of a method. It should not therefore be
interpreted as a call for unconditional discrimination against the correspond-
ing methods; categorical verdicts of this kind are scarcely admissible
generally.

We mention some differences of the approaches adopted in this mono-
graph, and of the results obtained, from the traditional treatments in
optimization theory.

The traditional approach to estimates of the rate of convergence of
numerical methods of optimization is usually of an asymptotic character; the
type of asymptotic behaviour of the laboriousness of a method for a required
accuracy is elucidated. The question of when the ‘exit’ on to this asymptotic
behaviour takes place is investigated comparatively rarely, as is, incidentally,
the important question of the effect of other parameters, apart from accuracy,
of the class of problems (parameters such as, for example, the dimension of the
problems under solution).

In this monograph, on the other hand, all the estimates given for the
laboriousness of numerical methods of optimization (as also, incidentally, for
most of the estimates of complexity) are of a non-asymptotic character. We
write down in explicit form the upper bounds for the methods under
examination, as a function of the required accuracy (measured in a sensible
way) and of the parameters which distinguish the class of problems to
be solved (such as the dimensionality of the problem, the number of con-
straints, the characteristics of the geometry of the domain of the problem,
etc.).

In the literature on methods of optimization the rate of convergence (the
rate, not the fact of convergence itself) is established generally only as applied
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to classes of sufficiently ‘good’ problems. In the present monograph optimiz-
ation methods are studied as a rule on wider classes of problems. In most parts
of the book nothing more is required of the problems to be solved other than
their convexity, unless perhaps the boundedness of the domain of the problem
and the continuity of the functionals appearing in it (sometimes these
functionals have to satisfy a Lipschitz condition). Even the classes of strongly
convex problems considered in Chapter 7 are still somewhat wider than classes
of ‘good’ functions on which it is traditionally accepted that optimization
methods should be evaluated. Of course, evaluating methods on wider
families of problems than usual leads to a worsening of the potentially
attainable guarantees of their work. It turns out, however, that in many cases
this worsening is not too considerable, and it represents an acceptable
payment for the extension of the store of problems over which the new
guarantees are extended.

Having sketched in general terms the purpose of the monograph, we shall
briefly characterize the contents of the work by sections (a more detailed
survey of the results is given in Section 1.1). The first chapter is of an
introductory character: here we form the language in which later we formulate
and solve the problems concerning the potential effectiveness of numerical
methods. The separation of the later material into chapters is dictated by the
necessity to examine separately the various classes of extremal problems. In
the last section of Chapter 1, smooth (but not necessarily convex) problems
are examined. The results in this section, some well-known, some new, are of a
negative character (it turns out that this class of problem is, in the general case,
hopelessly too complicated for solution). Convex programming, to which the
main attention is paid in the book, presents a much more optimistic picture. In
Chapters 2, 3, and 4 we examine classes of ‘all (in general)’ convex problems
(including non-smooth ones) which can be solved by first-order methods when
there is exact calculation of the values and derivatives of the components in
the problem. In Chapters 5 and 6 we study convex problems in which the
values and derivatives of the components are observed mixed with noise, i.e.
problems of convex stochastic programming. In Chapter 7 the classes of
smooth convex problems and strongly convex problems are considered, and
in Chapter 9 we deal with problems solvable by zeroth-order methods, i.e.
methods working with the values but not with the derivatives of the
components in the problem. Chapter 8 stands somewhat by itself; it deals with
the estimation of the laboriousness of some popular methods of solving
strongly convex problems. The appendix contains a résumé of a number of
classical mathematical concepts and theorems which are used in the book and
which are not always familiar to applied mathematicians. In general it should
be mentioned that the treatment in this book is such that it should be
accessible to a reader having the normal training of a numerical analyst
interested in optimization theory. More complicated mathematical apparatus
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is brought in only in the ‘formal niceties’ (of secondary importance) in some of
the proofs.

The exposition of material relating to concrete classes of extremal problems
usually comprises the following main steps:

(1) a description of the class of problems in question;

(2) a description of some methods of solving problems of the given
class;

(3) alower bound (over all conceivable methods of solving the problems of a
given class) for the potentially attainable laboriousness of these methods
for a given error.

As a rule the choice of actual methods in (2) leads to estimates for the
laboriousness which essentially are the same as the potential lower bounds in
(3). As a result we obtain, on the one hand, a sufficiently complete idea of the
‘objective complexity’ of the given class of problems, and on the other hand, a
basis for the theoretical recommendations on the use of the methods in (2)
which cannot essentially be improved as regards laboriousness. We mention
that the ‘sub-optimal’ methods which we adduce are, in a number of cases, in
substantial measure new.

We point out that a reader can, if he wishes, restrict his attention to the
sections which deal with some particular class of problems.

As regards the nature of the exposition it is worth mentioning the following.
We have tried to distinguish as clearly as possible the ideas which form the
basis of the constructions here presented, and to describe the numerical
methods precisely. The formal proofs are kept separate; some of them are
given in separate sections. In a first reading these proofs could, if so desired, be
omitted, and this would not hinder the reader from using the methods
described, although it would make detailed understanding of their mechanism
more difficult.

Many of the results are formulated as exercises, inviting the reader to prove
some proposition which has only been formulated. If some not entirely trivial
fact is concerned, then often a proof is given (enclosed in angular brackets
{ ...)> ). We stress that the reader should acquaint himself with the
propositions enunciated in the exercises, whether or not he actually carries out
the exercises themselves.

Regarding terminology: apart from the standard terminology, which we use
without special explanation, we have to use extensively a number of specific
concepts and special notation. On first encountering non-standard notation
and terms appearing without commentary, the reader should consult the list
of notation at the end of the book, or the subject index, where he will find a
reference to the section in which the corresponding object is first defined. An
exception occurs with certain secondary concepts and notation used only in
some one chapter. Accordingly, to understand a particular section of a
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chapter, the reader will generally need to be acquainted with all the preceding
sections of that chapter.

A few words about the bibliography and references. The list includes only
those works which are directly referred to in the main text; the list is short and
makes no claim to cite all the works which deal with the theme of the
monograph. When using the results of others, the authors have tried to
mention the fact by pointing out the source of their information (without
setting themselves the task of identifying the original source without fail). In
speaking of results which have become part of the chrestomathy, so to say, we
have replaced direct citation by phrases such as ‘it is well known that . . .’. Itis
quite possible that some of the results regarded by the authors as original may
in actual fact be re-discoveries of already known facts (that is why we used the
word ‘tried’ in a previous sentence); in that case we beg in advance the pardon
of the first discoverers.

In conclusion we regard it as our pleasant duty to thank E. G. Goldshtein
and B. T. Polyak for stimulating discussions of the results of the work.

A. S. NEMIrRovsKY, D. B. YubIiNn
June 1978



Preface to the English Edition

This book is one of the series ‘Theory and methods of systems analysis’
published under the guidance of an editorial board of economists and
cyberneticists headed by D. M. Gvishiani, a Soviet philosopher and son-in-
law of the former Soviet prime minister, Alexei N. Kosygin. Of the authors of
the present work, Professor D. B. Yudin holds the chair of mathematical
methods in the faculty of economics in Moscow university, and
Dr. A. S. Nemirovsky, a senior scientific fellow at the same university, is a
disciple of the late distinguished mathematician G. E. Shilov. The book is
based on, and is an extension of, a series of papers by these authors published
mainly in the journal Economics and Mathematical Methods.

The authors set up their own mathematical model in order to investigate
questions concerning the complexity of optimization problems and efficiency
of methods of solving them. They obtain bounds for the potential efficiency of
methods of solving standard classes of optimization problems, and propose
new methods which largely realize these potential bounds. They apply their
apparatus to draw perhaps surprising conclusions about a number of popular
methods of optimization. But, as with all mathematics, the reader must
remember that the technical terms have precisely the meaning assigned to
them in the definition of the concepts; this is particularly necessary when
every-day words such as ‘method’ and ‘complexity’ are being used as technical
terms. In particular, as the authors themselves point out, their analysis does
not deal at all with such practically important aspects of methods as the
simplicity of their computational organization and computational stability.

When not being strictly formal, as in the definitions and statements and
proofs of theorems, the authors write in a lively and informal style, which may
at times even be humorous. They have a habit of frequently putting words into
quotation marks, presumably to point up and lend immediacy to their
exposition; this practice has been followed in the translation.

F. R. Dawson
Department of Mathematical Sciences, University of Dundee
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1

Introduction

1.1 FORMULATION OF THE PROBLEM OF ESTIMATING THE
COMPLEXITY OF OPTIMIZATION PROBLEMS, AND

THE MAIN RESULTS OF THE WORK. AN INFORMAL
DESCRIPTION

In this section we describe informally the set of problems we shall be concerned
with and the direction of our investigations. Our aim is to show that the
approach adopted in this work for evaluating the complexity of problems and
the effectiveness of methods is a natural one.

1.1.1

We shall study the potentialities of numerical methods in solving mathema-
tical programming problems. We need hardly mention how important such
methods are in the application of mathematics to practical problems. The
widening field of applications and the power of computers is leading firstly to a
sharp growth in the complexity of the optimization problems which have to be
‘worked out to the answer’, and secondly to a continuous reinforcement of
the arsenal of methods used for this purpose. In this situation there is natu-
rally a growing tendency to take a hard look at the theory of these
methods themselves. By contemporary standards, its mere convergence gives
no method the right to exist; ‘decency’ requires us also to estimate its
laboriousness.

The next stage is that one wants to find the potentially attainable lower
limits for the amount of labour needed to solve a given type of problem, and to
construct methods which attain these limits, i.e. methods—in some sense
optimal—which ensure solutions of the required quality for all the problems in
question, with the least possible amount of labour. These are precisely the
problems to which the present work is devoted. Our target is a theoretical
analysis of the potentialities of numerical methods.

A strict formulation of the problems arising in this connection requires a
formalization of ideas such as ‘a class of problems of a given type’, ‘the

1



