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Preface

This book is intended for use in a one-semester or two-quarter course in
algebra at the freshman or sophomore level. We assume only that the student
has completed the standard high school courses in algebra and trigonometry,
although the latter is not essential. At the University of California, Santa
Barbara, this material has been used to replace the one-semester course which
is ordinarily entitled ““Advanced College Algebra” or “ Theory of Equations.”
In this department such a course has traditionally been taught to second
semester freshmen or beginning sophomores and is a requirement for all
mathematics majors. It is generally agreed that some of the material in a
classical course in the theory of equations is no longer pertinent to the educa-
tional requirements of mathematics and science majors. In Chapter 4 of this
book, however, we have tried to retain those important parts of the theory of
equations that bear some relation to other branches of mathematics—for
example, linear algebra, numerical analysis, and modern algebra.

The goal of this book is to include those important topics in algebra that
are usually assumed to be too elementary to be incorporated in a serious
treatment of ‘“modern algebra’ (a la van der Waerden or Jacobson) and too
advanced to be called *“ college algebra”’ in the ordinary sense. It is hoped that
this material will prepare the student for subsequent courses in linear algebra,
modern algebra, and some parts of analysis—for example, the theory of convex
sets and convex functions. Our experience at Santa Barbara has been that
many students majoring in the social sciences, as well as in the natural sciences,
have found this material to be useful. This is particularly true of Chapters 2
and 3, on combinatorial analysis and convexity.

We have not tried in any sense to develop an axiomatic treatment of the
material contained herein; rather, we have tried to penetrate significantly into
the actual subject matter of the topics that we have dealt with. It is perhaps
best to illustrate our viewpoint by example. In Chapter 2, on combinatorial
analysis, we use the fact that a positive integer can divide another positive
integer to yield a unique quotient and a nonnegative remainder. This fact is
familiar to every fifth-grade student and thus we feel that it can safely be used
in Chapter 2, although it is not until Chapter 4 that we give a systematic
treatment of elementary number theory, including the Division Algorithm.

vii



viii Preface

Again, we assume in Chapter 1 that the student is acquainted with the most
elementary aspects of the *greater than” relation between real numbers
although we do not investigate the theory of inequalities until Chapter 3.

It has been our experience that axiomatics at an elementary level is an
inappropriate approach to the study of mathematics. There are altogether too
many important, new, and exciting ideas in mathematics and the student may
not be able to afford the time for a lengthy contemplation of material such as
the Peano axioms for the integers. In our opinion, it is much more important
to know something about convex sets, convex functions, and the classical
inequalities than to be preoccupied with an interminable sequence of
trivial results culminating in (—1) x (=1) = L.

The experienced teacher will see from looking at the table of contents that
many of the topics that are covered here seem quite advanced for the ordinary
student for whom this text is intended. The Frobenius-Konig theorem,
the Minkowski inequality, and the basis theorem for symmetric polynomials
are examples of topics that might well be deferred to a more advanced course.
However, we have presented this material at a level which we feel makes it
accessible to students with backgrounds such as we have described above. Of
course, we also include much of the traditional material, such as de Moivre’s
theorem, greatest common divisors, and the remainder theorem for poly-
nomials.

The four chapters are essentially self-contained and, in the main, in-
dependent of one another. Chapter 1, “Numbers and Sets,”” deals with the
elementary language of mathematics: induction, summation and product nota-
tion, composition of functions, elementary theory of cardinality. Chapter 2,
“ Combinatorial Analysis,” gives a fairly complete theory of permutations
on a finite set. In this chapter we also introduce the concept of an incidence
matrix and we motivate the definitions of matrix product and sum by their
combinatorial applications. Although we state and prove the important
elementary properties of matrices, we do not attempt to give a systematic
treatment of linear algebra and the theory of matrices in this text. Chapter 3,
“Convexity,” has as its goal the investigation of important and classical
inequalities for real numbers; for example, the arithmetic-geometric mean
inequality, the triangle inequality, and Minkowski’s inequality. It is in this
chapter that our treatment is somewhat novel. We do not make the develop-
ment dependent on calculus, and it should be interesting to the knowledgeable
reader to see that most of the important aspects of this subject can be done
completely independently of the techniques of analysis. Chapter 4, *“ Rings,”
unifies the theory of polynomials, integers, and complex numbers by regarding
them as similar algebraic structures. The last section, on the theory of equa-
tions, lies on the boundary between analysis and algebra, and because of this,
some of the arguments that are used in the development of the Sturm theory
have a strong analytical flavor. The single item that is used from analysis, the
least-upper-bound axiom, is explicitly stated and the immediate consequence
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of this axiom that polynomial functions attain their maxima and minima on
closed intervals is also explicitly set out.

Every section of the book ends with a true-false quiz and a set of exercises.
A complete set of solutions and explanations is provided in the “Answers and
Solutions” at the end of the book. We have taken the attitude that any
serious student will make a genuine attempt to solve some of the more difficult
questions by himself and that, if he is unsuccessful, the immediate accessibility
of a solution can only serve to reinforce the learning process. The authors
have found in teaching this material that the first three chapters can be
covered without difficulty in about three quarters of a semester. This means
that in an ordinary one-semester course a certain amount of material in
Chapter 4 would have to be omitted. We suggest omitting Section 5 and parts
of Section 6; in particular, the Sturm theory. Also, for the better-trained high
school graduate, much of the material in Chapter 1 will be repetitious and
could therefore be covered rather quickly or omitted altogether. We would
suggest that a minimum syllabus for a course at this level should include the
first three sections of Chapter 1, Sections 1 and 2 of Chapter 2, all of Chap-
ter 3, and Sections 1, 2, 3 and parts of 4 and 6 in Chapter 4. Such a selection
of material can be easily covered in a quarter.

The authors are pleased to express their thanks to Dr. David Outcalt,
Mrs. Ruth Afflack,and Miss Elizabeth Rau for their many helpful criticisms.

M. M.
H. M.
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1

Numbers and Sets

1.1 Mathematical Induction

This book is intended for use in an algebra course at the freshman or
sophomore level. Any student who has successfully completed the standard
high school courses in algebra has sufficient preparation to proceed with this
subject matter. Our raw material will be numbers: real numbers, rational
numbers, integers and natural numbers. May we recall that a rational number
is a real number of the form p/q where p and g are integers, g # 0. We use the
term natural number synonymously with the term positive integer. The
natural numbers are also called counting numbers, since the sequence 1, 2,
3,...1is used in enumerating objects or events. The sequence of natural
numbers is infinite; that is to say, given any number in this sequence we can
conceive of a natural number which immediately follows it.

Many propositions in mathematics are proved or disproved by considering
all possible cases. This often cannot be done if the proposition involves the
infinite sequence of natural numbers since the number of cases to be con-
sidered may well be infinite. However, we sometimes can prove such proposi-
tions by using the principle of mathematical induction. This principle is in-
herent in the concept of natural numbers, and we do not attempt to prove it
by means of simpler mathematical notions.

Principle of Mathematical Induction Let a proposition P(n) be either true

or false for every natural number n. Suppose that
(i) P(1) is true,

(ii) the truth of P(k) implies the truth of P(k + 1) for all k.
Then P(n) is true for all natural numbers n.

Although, as we said, we shall not prove the principle of induction, we can
argue the plausibility of this principle. Suppose that both induction hypotheses
hold. Then, by (i), P(1) is true. It follows from (ii) (with k = 1) that P(2) is

1



2 Numbers and Sets [Ch. 1

true. Another application of (ii) (with k = 2) showsthat P(3)istrue. And so on.
Before we give examples of the use of induction we introduce some
notation.

Definition 1.1 (T and I notation) The symbols T and I1 are used as an
abbreviated notation for addition and multiplication. If a,, a,,..., a,, is any
finite collection of numbers or other mathematical entities for which addition
(multiplication) is defined then

a;=a,+a,+az+ - +a, €))
1

iINMs

13

and

—s

a;=a.a,as " a,,. 2)

1

These definitions can also be stated as follows:

1 m m—1
-Zai=al and, for m > 1, .Za.-=(_z a.-)+am; (3)

1 m m-
Ha,-=a, and, for m > 1, Hai=(na.~)am- 4
: i i=1

The definitions (3) and (4) are rigorous versions of (1) and (2) and, in fact,
define the symbols

Yo .8nd. o Jla
=1, i
inductively. Thus, for example,

4 4
Yay=a,+a,+as+a,, Il:a: =aya,a5a4,
= i=1

4
Z(Zt+l)—(2xl+l)+(2><2+1)+(2><3+1)+(2><4+1)—24

4 4
1 4; = aiataiat = a] [] at = a'abdial, .
t=1 i=1
We are now in a position to give examples of the use of the principle of
mathematical induction.



Sec. 1.1] Mathematical Induction 3
ExAMPLE 1.1

Prove that
N@2i=1)=k> 5)
i=1
We use induction on n. If n = 1 then both sides of (5) are equal to 1 and thus

(5) is true for n = 1. We assume now that (5) is true for n = k and show that
this assumption implies that (5) holds for n = k + 1. Now, if

zk:(Zi—l)=k2
i=1
then

k+1 k
YRi-)=YQi-D)+Qk+1)-1)
i=1 =1

=k*>+ 2k +1

= (k + 1)2

Thus we have proved by induction that (5) holds for all .

Suppose we can prove that a proposition P(h) is true for some fixed h
and that the assumption of P(k) being true implies that P(k + 1) is true for
any k > h. Then clearly P(n) is true for all n > A.

ExXAMPLE 1.2

Prove that if a is any positive number then
(14+a)">1+na (6)

for any natural number n, n > 2. Again, we use induction on n. For n = 2 we
check directly that
A+a)i=14+2a+a’>1+2a.
Assume that
1+ a)> 1+ ka.
Then it follows that
(I +a)*' = 4+ a)*(1 + a)

> (1 + ka)(1 + a)

:l-l;(k+1)a+ka2

>1+4(k+ l)a.
Thus (6) holds forn =2, 3,....
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As our next application of the principle of induction we prove the bi-
nomial theorem. Before we do this we shall introduce the notation for fac-
torials and binomial coefficients.

Definition 1.2 (Factorial) If n is any nonnegative integer we inductively
define the number n!, called n-factorial, by

0ol=1 and, forn >0, n!'=(n-1!n.
Using more suggestive, if somewhat vaguer, notation,

n!l=1x2x3x-*xn

n
= T i n>0.
=i

Definition 1.3 (Binomial coefficient) If n and r are integers, 0 <r <n,
we define
it - n!
(") T (n=nrV

The number (’:_) is called the binomial coefficient n over r.

The following properties of binomial coefficients follow immediately from

the definition:
n n
()2

n n n+1
(r)+(r+])_(r+l)’ ®)
For example, we can establish (8) by computing

n! n!

()+(-30) ==
r r+1) (m=r'r! (n—r—D!(r+1)!

— _n!(r+1)+n!(n—r)
T o (m=n'r+ 1)

_ nl(n+1)
T (=)' (r+1)!

_ (n+ 1)!
T (n+ 1=+ D)+ 1)

_(n+1
T \r+1)
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Formula (8) suggests a method for constructing a table of binomial
coefficients:

r 012 3 435

A WLWNN=OS
e e e
A W

. O N W

DR e S S

o N =

—

This table is called the Pascal Triangle.

Theorem 1.1 (Binomial theorem) If a and b are real numbers and n is a
natural number then

@+by=7% (':)a""b’. )

r=0

Proof. We use induction on n. Formula (9) clearly holds for n = 1. We
assume that (9) holds for n = k; i.e., that

k=k k k—rpr
(@a+b)= )| )a""b"

r=0

We shall prove that this assumption implies the truth of (9) for n =k + 1.
We use our assumption to compute

(a + b)**' =(a + b)a + b)*
L[k
= (a + b) Z ( )ak—rbr
r=o\"

1 & (kY k-rprit
=Z()a T1pT 4+ Z()a g
r=o\’ r=o\’"

Now, set = r + 1 in the second sum. It becomes

kil k ak—t+lbr
t=1 t—1

which is, of course, equal to

kil k ak—r+1br
Zi\r—1 :
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Therefore,

k k k+1 k
(a+b)k+1= Z(r)ak—r+1br+ Z(’_ 1)ak—r+1br
Toor=1 =

r=0

e B b

_[(k+1 gkt k+1 gk k+1 K+l
=45 et B (7 et (e11)p

m

where we have used (8) and the fact that (Z) = ( 0

) =1 for any natural

number m. Thus

r=0

k+1
(a+b)k+1= Z(k+1) k+1—rbr

L

and the prpof by induction is complete.
1]
Quiz

Answer true or false:

(In what follows, r and » are positive integers.)

4 5
Z 1= Zz(t+ s,

5
2. Hcos (km|6) =
k=0
5
3. Z cos (kw/6) =
rn—t+1
4. Ifr <n, then ( ) g e
r =1 t

5. For any r, (r®)! = (r!).
6. Foranyr, (er) > o7

7. If a and b are nonzero real numbers and (a + b)" =a" + b", then n = 1.

n n
8. If2r+ 1 <n then (r)<(r+l)'

9. (’r’)<(':j:i) for all n> r >0,

10. For real numbers the coefficient of x*y? in the expansion of (x4 y)° is

i
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Exercises

1. Compute the following numbers:

5 4 2 l
@ Yo O Fen ©

zo F @nr © 25121
£) X s e @ (s en;
4 15 2'_1

m []ei-1); o I 5

2. Write out the following expressions in full:
2n 1
e s S 6 .
@ Z( ¢ ®a-2%
© (- x)Z Xt (x°=1).
t=0
3. Find the value of (%;)

4. If(;l)—“ (5) find 7.

5. Find the coefficient of x!7 in the expansion of (x — 2)*°.

6. Provethat Y "_, (’:) —2"and that Y 7_, ( — 1)r('r') iy

Expand the expression (x — 1/x)” in decreasing powers of x.

8. Show that n" >(n+ 1)! for n>3.
n n—2 n—2 n—2
9. Prove that (r):( " )+2(r—1)+(r—2)'

10. For a fixed » find the greatest value of (:)

11. Prove that (n/2)" > n! for n >6.

1.2 Sets

The concept of set is a ubiquitous one in mathematics. It is, however,
usually left undefined. By a set of mathematical objects, which we call the
elements of the set, we understand the fotality (or the collection, or the
aggregate, or the class) of these elements. For example, we can speak about
the set of natural numbers, the set of real numbers, the set of integers greater
than 4, the set of points inside a given circle, the set of solutions of an equation,



