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Preface

There has been a revolution in the art of control
systems design due to the ready availability of
digital computational facilities on a scale that could
not have reasonably been envisaged a decade ago. In
theory, the software now exists to solve most design
problems "in absentia'. However, in practice, this
presupposes a great deal of intuition on the part of
the system designer insofar as the devices within the
system must be realistically modelled, and the struc-
ture of the system must be understood. The opera-
tional performance specifications must be properly
interpreted as a reliable performance index capable of
selecting an engineering optimum design, alternative
forms of compensation still need to be evaluated and
costed, and the advantages of feedback control pro-
perly exploited. Finally, products of any special-to-
type software need to be evaluated against accepted
norms.

This monograph is motivated by the need to provide
practising engineers with the understanding of feed-
back systems necessary to make effective use of the
new methodology and to give them added confidence in
their design and development activities. It should
prove of equal interest to mechanical, electrical,
aerospace, maritime, hydraulic, and pneumatic systems
specialists.

The monograph builds on the knowledge that most
practising systems engineers have a nodding acquain-
tance with transfer function concepts. All University
research groups working on dynamic analysis problems
use a suite of classical control programmes to cross-
check the feasibility of solutions obtained by modern
control theory. It is implied, for example, that
displaying system pole-zero arrays can provide an
understanding of system behaviour over and above the
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information contained in a quadratic performance
index. This philosophy dates back to concepts of
damping ratio and natural frequency associated with a
second order system. If the remainder of the poles of
a high order system are "far—-away' in the s-plane, the
engineer can still visualise the dynamic behaviour of
the system to an acceptable degree of approximation.

Concepts based on second order transfer functions
are valuable items in the system engineer's tool kit.
They do have fundamental limitations, and leave many
practical questions unanswered. These include:-

()

(b)

(c)

(d)

(e)

when does the use of second order transfer
function approximations mislead the engineer into
making false predictions?

under what engineering circumstances should a
high order system be designed so that dynamic
performance is dominated by a few poles and
zeros?

what are the rules for approximating high order
systems by low order models, and how accurate is
the approximation?

what is the optimum system pole-zero array to
choose for a low order model, and what factors
influence the definition of optimum?

having arrived at a desired system transfer
function meeting the performance specifications,
how is the compensation to be chosen?

It is the purpose of the monograph to answer these
questions using coefficient plane concepts which
relate to third order models. Reducing a complex
system to a coefficient plane model permits us to
visualise cause and effect from two dimensional plots.
This is because the third parameter, the normalisation
frequency, can be interpreted as a time scaling factor
similar in effect to the undamped natural pulsatance
of a second order system. So the monograph concen-
trates on the presentation of visual aids such as
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percentage overshoot and bandwidth contours.

A number of system simplification methods found
particularly useful by the author and his colleagues
are included. These are polynomial truncation, Bode
plot modelling, and s plane modelling via the time
delay theorem. The "why" of good control system
design is also explored in terms of reduced sensi-
tivity to plant variation, and optimisation of per-
formance in the presence of plant input saturation.
The final chapter exploits the use of coefficient
plane models in a CACSD suite of programmes in which
the performance of a high order system is optimally
matched to deterministic specifications.

The author has enjoyed working in the area of co-
efficient plane modelling with numerous colleagues.
Particular thanks are due to Professor George J.
Thaler (U.S. Naval Postgraduate School, Monterey), Lt.
Cdr. Mike J. Ashworth (Royal Naval Engineering Col-
lege, Manadon), and Mr. Peter Garnell (Royal Military
College of Science, Shrivenham), who were kind enough
to comment on the manuscript in various stages of
preparation.
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CHAPTER 1

The Time Delay
Theorem Allied to
Low Order Modelling

1.1.

INTRODUCTION

There is much interest at this point in time in the
derivation of low order models to represent complex
plant, processes, and systems. For example, a recent
survey of available techniques lists 40 references,
but more importantly, 38 different authors are in-
volved, and some 28 research establishments, uni-
versities, and industrial concerns are represented
(110), thus indicating a broad base for this work.
Consequently, we may expect to find a wide variety of
reasons for using low order models, of which the
following are thought to be the most important;

(1)

(ii)

To Simplify Understanding of the System, whether

the problem is analysis, synthesis, or identifi-
cation. An interpretation of such expressions as
time constant, damping ratio, and natural fre-
quency is second nature to the control engineer,
particularly since standard curves describing
performance of simple systems have been available
for many years (57). It is therefore natural to
attempt to reduce complex systems to such simple
terms, even if considerable skill is required to
obtain a realistic model.

To Reduce Computational Requirements, which means

better use of support facilities as well as the
computer itself, in addition to widening the

1



scope of problems which can be handled on a given
size of machine. For example, if it is necessary
to evaluate the transient response sensitivity to
parameter variatiggs using classical sensitivity
theory, then an n order system in general
requires a simulation of order 2(n+l) (105). 1In
this instance provision of a low order model
adequately describing the dynamic response
completely alters the scale of the computational
problem.

(iii)To Reduce the Likelihood of Data Preparation

(iv)

(v)

(vi)

Errors, simply on a law of averages basis,
because less parameters are involved, and the
range of numbers encountered reduced.

To Make Best Use of Scanty Experimental Data, by
estimating a few parameters with confidence,
rather than estimating more parameters with less
confidence. The low order model is then a more
reliable predictor of system performance (93).

To Reduce Hardware Requirements in situations
where an on-line system model is required; for
example in monitoring the integrity of avionic
equipment by comparing system and model outputs,
or for use in self-adaptive systems. The same
argument also applies to the design of reduced
order state observers (38), and to the design of
compensation networks (5).

To Generalise Results established on a particular

system to comparable systems, using low order
models which basically differ in time scale only.
This is particularly useful in tolerancing
performance for system checkout (21).

(vii)To Provide Guidelines for On-Line Interactive

Modelling by selecting the most useful normalised
test features, such as individual frequencies for
signal injection (111).

(viii)To Improve the Methodology of Computer Aided

Control System Design, by relating a suitable low




