
Coefficient Plane Models for Control System Analysis and Design

Denis R. Towill

TP13

Coefficient Plane Models for Control System Analysis and Design

Professor Denis R. Towill, D.Sc., C.Eng., F.I.E.R.E. M.I.Prod.E.

University of Wales Institute of Science and Technology

754

EBAKHSA

RESEARCH STUDIES PRESS

Editorial Office: 8 Willian Way, Letchworth, Herts SG6 2HG, England

Copyright © 1981, by John Wiley & Sons,Ltd.

All rights reserved.

No part of this book may be reproduced by any means, nor transmitted, nor translated into a machine language without the written permission of the publisher.

British Library Cataloguing in Publication Data:

Towill, Denis Royston
Coefficient plane models for control system
analysis and design.—(Mechanical engineering
research studies; 1).
1. Control theory
1. Title II. Series
629.8'312 QA402,3 80-41695

ISBN 0 471 27955 2

Printed in the United States of America

Coefficient Plane Models for Control System Analysis and Design

8628350

MECHANICAL ENGINEERING RESEARCH STUDIES

Series Editor: Professor F. J. Bayley, University of Sussex, England

 Coefficient Plane Models for Control System Analysis and Design

D. R. Towill

Preface

There has been a revolution in the art of control systems design due to the ready availability of digital computational facilities on a scale that could not have reasonably been envisaged a decade ago. theory, the software now exists to solve most design problems "in absentia". However, in practice, this presupposes a great deal of intuition on the part of the system designer insofar as the devices within the system must be realistically modelled, and the structure of the system must be understood. The operational performance specifications must be properly interpreted as a reliable performance index capable of selecting an engineering optimum design, alternative forms of compensation still need to be evaluated and costed, and the advantages of feedback control properly exploited. Finally, products of any special-totype software need to be evaluated against accepted norms.

This monograph is motivated by the need to provide practising engineers with the understanding of feed-back systems necessary to make effective use of the new methodology and to give them added confidence in their design and development activities. It should prove of equal interest to mechanical, electrical, aerospace, maritime, hydraulic, and pneumatic systems specialists.

The monograph builds on the knowledge that most practising systems engineers have a nodding acquaintance with transfer function concepts. All University research groups working on dynamic analysis problems use a suite of classical control programmes to crosscheck the feasibility of solutions obtained by modern control theory. It is implied, for example, that displaying system pole-zero arrays can provide an understanding of system behaviour over and above the

information contained in a quadratic performance index. This philosophy dates back to concepts of damping ratio and natural frequency associated with a second order system. If the remainder of the poles of a high order system are "far-away" in the s-plane, the engineer can still visualise the dynamic behaviour of the system to an acceptable degree of approximation.

Concepts based on second order transfer functions are valuable items in the system engineer's tool kit. They do have fundamental limitations, and leave many practical questions unanswered. These include:-

- (a) when does the use of second order transfer function approximations mislead the engineer into making false predictions?
- (b) under what engineering circumstances should a high order system be designed so that dynamic performance is dominated by a few poles and zeros?
- (c) what are the rules for approximating high order systems by low order models, and how accurate is the approximation?
- (d) what is the optimum system pole-zero array to choose for a low order model, and what factors influence the definition of optimum?
- (e) having arrived at a desired system transfer function meeting the performance specifications, how is the compensation to be chosen?

It is the purpose of the monograph to answer these questions using coefficient plane concepts which relate to third order models. Reducing a complex system to a coefficient plane model permits us to visualise cause and effect from two dimensional plots. This is because the third parameter, the normalisation frequency, can be interpreted as a time scaling factor similar in effect to the undamped natural pulsatance of a second order system. So the monograph concentrates on the presentation of visual aids such as

percentage overshoot and bandwidth contours.

A number of system simplification methods found particularly useful by the author and his colleagues are included. These are polynomial truncation, Bode plot modelling, and s plane modelling via the time delay theorem. The "why" of good control system design is also explored in terms of reduced sensitivity to plant variation, and optimisation of performance in the presence of plant input saturation. The final chapter exploits the use of coefficient plane models in a CACSD suite of programmes in which the performance of a high order system is optimally matched to deterministic specifications.

The author has enjoyed working in the area of coefficient plane modelling with numerous colleagues. Particular thanks are due to Professor George J. Thaler (U.S. Naval Postgraduate School, Monterey), Lt. Cdr. Mike J. Ashworth (Royal Naval Engineering College, Manadon), and Mr. Peter Garnell (Royal Military College of Science, Shrivenham), who were kind enough to comment on the manuscript in various stages of preparation.

8263493

Contents

			Page
PREFACE			
CHAPTER	1	THE TIME DELAY THEOREM ALLIED TO LOW ORDER MODELLING	
	1.1	INTRODUCTION	1
	1.2	BASIC TRANSFER FUNCTIONS	3
	1.3	A THIRD ORDER MODEL OF AN AIRCRAFT LANDING SYSTEM	5
	1.4	RE-WRITING THE MODEL IN COEFFICIENT PLANE FORM	9
	1.5	MATSUBURU TIME DELAY THEOREM	11
	1.6	ALTERNATIVE INTERPRETATIONS OF THE MATSUBURU TIME DELAY THEOREM	13
	1.7	EXTENSION OF THE TIME DELAY THEOREM TO LOW ORDER MODELLING	14
	1.8	TIME DELAY MODELS FOR AN AIRCRAFT LANDING SYSTEM	15
	1.9	AN EQUIVALENT ANALOGUE LOW ORDER MODEL	17
	1.10	THE GENERAL APPLICABILITY OF COEFFICIENT PLANE MODELS	18
	1.11	HOW THE MONOGRAPH IS ARRANGED	20
CHAPTER	2	SYSTEMS WITH SECONDARY RESONANCES	
	2.1	INTRODUCTION	23
	2.2	ANALYSIS OF A THIRD ORDER SYSTEM	24

			1 age
	2.3	EFFECT OF INPUT STIMULUS ON RESPONSE OF A THIRD ORDER SYSTEM	27
	2.4	"INDIRECT" IMPULSE RESPONSE TESTING	32
	2.5	MATCHING THE PNS TO THE SUT	34
	2.6	AN EXAMPLE OF PNS SELECTION	36
	2.7	SOME ARBITRARY REDUCED ORDER MODELS OF A COMPLEX ELECTRO- HYDRAULIC SERVO-MECHANISM	38
	2.8	REDUCED ORDER MODELS OBTAINED VIA FREQUENCY DOMAIN CURVE FITTING	40
	2.9	IMPLEMENTING A TIME DELAY MODEL FOR PNS TESTING	43
	2.10	SOME PRACTICAL RESULTS ON HARDWARE SYSTEMS	46
	2.11	EXPLOITING THE RESULTS IN A LARGE SCALE SIMULATION	47
	2.12	SUMMARY OF THE INVESTIGATION	49
CHAPTER	3	INTRODUCTION TO THE COEFFICIENT PLANE	
	3.1	STABILITY CONSIDERATIONS	53
	3.2	GENERAL COEFFICIENT PLANE MODEL	55
	3.3	PHYSICAL INTERPRETATION OF THE EFFECT OF THE SYSTEM ZEROS ON THE STEP RESPONSE	58
	3.4	A SYSTEM WITH A ZERO IN THE RIGHT HAND PLANE	62
	3.5	APPROXIMATION TO TYPE II SYSTEMS	64

			Page
	3.6	FREQUENCY RESPONSE	66
	3.7	STATE SPACE REPRESENTATION OF THE COEFFICIENT PLANE MODEL	68
	3.8	ANALOGUE SIMULATION OF COEFFICIENT PLANE MODELS	71
	3.9	NUMERICAL COMPUTATION OF DYNAMIC RESPONSE	72
	3.10	CONCLUSIONS	76
CHAPTER	4	TYPE I SYSTEMS	
	4.1	COEFFICIENT PLANE PROPERTIES OF THIRD ORDER UNITY NUMERATOR SYSTEMS	79
	4.2	PERFORMANCE ANALYSIS OF A STEPPING MOTOR	86
	4.3	"PERFORMANCE INDEX" OR "COST FUNCTION" CONTOURS	89
	4.4	DESIGN OF AN ITAE "OPTIMUM" AUTOPILOT	90
	4.5	BEST CHOICE OF PARAMETERS FOR A VELOCITY STABILISED MISSILE ROLL AUTOPILOT	96
	4.6	ESTIMATING FEEDBACK COMPENS-ATION SIGNALS	98
	4.7	"OBSERVER" IMPLEMENTATION OF ITAE OPTIMUM AUTOPILOT	100
	4.8	CHECKING THE "OBSERVER" DESIGN	105
	4.9	THE HYDRAULIC SERVOMECHANISM AS A FEEDBACK COMPENSATED DEVICE	107
	4.10	USING SMALL PERTURBATION MODELS	110

			Page
	4.11	A SIMPLE MODEL OF SATURATED PERFORMANCE	114
	4.12	LOW ORDER MODELLING VIA POLYNOMIAL TRUNCATION	115
	4.13	OPTIMISATION OF A HIGH PRESSURE CONTROL SYSTEM	116
	4.14	OPTIMISATION OF THE HIGH PRESSURE CONTROL SYSTEM VIA POLYNOMIAL TRUNCATION	119
CHAPTER	5	OPTIMAL TRANSFER FUNCTIONS	
	5.1	INTRODUCTION	123
	5.2	SEEKING CONSTRAINTS ON THE SYSTEM TRANSFER FUNCTION	124
	5.3	OPTIMISATION OF PERFORMANCE IN THE PRESENCE OF PLANT INPUT SATURATION	124
	5.4	FUNDAMENTAL TRANSFER FUNCTIONS	125
	5.5	CONTROL OF SPECIFIC PLANT DYNAMICS	128
	5.6	NON-LINEAR TRANSIENT RESPONSES	130
	5.7	WHY IS THE THIRD ORDER BUTTER- WORTH DESIGN BETTER IN THE PRESENCE OF SATURATION?	132
	5.8		133
	5.9	FUNDAMENTAL THEOREM RELATING SYSTEM BANDWIDTH TO PERFORM- ANCE IN THE PRESENCE OF PLANT INPUT SATURATION	135
		PLANT EXCITATION DUE TO A	125

			Page
	5.11	CHOOSING AN OPTIMAL TRANSFER FUNCTION VIA A QUADRATIC PERFORMANCE INDEX	137
	5.12	EQUIVALENCE BETWEEN OPTIMAL CONTROL THEORY AND SYSTEM POLE-ZERO CONSTRAINTS	139
	5.13	ESTIMATION OF THE OPTIMUM TRANSFER FUNCTION DIRECTLY FROM THE OPEN-LOOP BODE PLOT	141
	5.14	EFFECT OF DELIBERATE ADDITION OF FAR-OFF SYSTEM POLES TO INCREASE HIGH FREQUENCY	1//
		NOISE REJECTION	144
	5.15	RATIONAL SYNTHESIS PROCEDURE	148
CHAPTER	6	COEFFICIENT PLANE PROPERTIES OF TYPE II (ZERO VELOCITY LAG) SYSTEMS	
	6.1	INTRODUCTION	151
	6.2	SERIES COMPENSATED TYPE II SERVOMECHANISM	153
	6.3	FEEDBACK COMPENSATED TYPE II SERVOMECHANISM	155
	6.4	TRANSIENT RESPONSE OF THIRD ORDER TYPE II SYSTEMS	156
	6.5	TYPE II SYSTEM PERFORMANCE CONTOURS	159
	6.6	NOISE BANDWIDTH	164
	6.7	"OPTIMUM" TYPE II SYSTEMS DEFINED BY STANDARD FORMS	169
	6.8	COMPETING SYSTEMS WITH SAME MAXIMUM PERCENTAGE OVERSHOOT	169
	6.9	SENSITIVITY OF THE STEP RESPONSE OF TYPE II SERIES COMPENSATED SYSTEMS	174

			Page
	6.10	EFFECT OF VARYING NOMINAL STEP OVERSHOOT ON SYSTEM SENSITIVITY	177
	6.11	REDUCING SENSITIVITY VIA FEEDBACK COMPENSATION	178
	6.12	GRAPHIC ILLUSTRATION OF THE EFFECT OF FEEDBACK	180
	6.13	SUMMARY ON DESIGN FOR SENSITIVITY REDUCTION	182
	6.14	SYSTEM SENSITIVITY PROPERTIES EVALUATED DIRECTLY FROM COEFFICIENT PLANE CONTOURS	100
	6.15	SATURATION CONSIDERATIONS	183 188
		COMPARISON OF THE COMPET-	100
	0.10	ITIVE SYSTEMS	189
	6.17	CONCLUSION	191
CHAPTER	7	LOW ORDER MODELLING DIRECTLY FROM THE LOOP LOGARITHMIC PLOT	
	7.1	INTRODUCTION	193
	7.2	THE CONTRIBUTION OF KAN CHEN	193
		NUMERICAL EXAMPLE OF CHEN'S METHOD	198
	7.4	MULTILOOP SYSTEMS	201
	7.5	THE AIRCRAFT LANDING SYSTEM RE-VISITED	207
	7.6	THE UPDATED BODE PLOT METHOD	207
	7.7	SAVING SIMULATION TIME VIA THE LOW ORDER MODEL	213
		A RADAR TRACKING LOOP	
		CONCLUSIONS	213
	. • >	CONCLUDIONS	217

			Page
CHAPTER	8	COMPUTER AIDED CONTROL SYSTEM DESIGN (CACSD)	
	8.1	INTRODUCTION	219
	8.2	CACSD MINIMISATION OF A STEP RESPONSE PERFORMANCE INDEX	221
	8.3	A QUADRATIC PERFORMANCE INDEX BASED ON DYNAMIC RESPONSE CRITERIA	225
	8.4	DETERMINATION OF OPTIMUM ω_{o} BY CONSTRAINED MINIMISATION	228
	8.5	UNCONSTRAINED MINIMISATION	229
	8.6	COMPARISON OF UNCONSTRAINED AND ω CONSTRAINED MINIMIS-ATION OPTIONS	230
	8.7	INCORPORATING LOW ORDER MODELS WITHIN A CACSD PROCEDURE FOR HIGH ORDER SYSTEMS	231
	8.8	SAMPLE PROCEDURE	233
	8.9	FUNCTIONAL REPRESENTATION OF TRACKING SYSTEMS	235
	8.10	PRELIMINARY DESIGN OF A HYBRID SERVO SYSTEM FOR PRECISE CONTROL OF A NASA TELESCOPE	239
	8.11	"IRONING OUT" THE BUGS VIA SIMULATION	248
	8.12	REDUCING THE EFFECT OF "STARTUP" AND "SLEWING" ON SYSTEM STABILITY	249
	8.13	REDUCING THE EFFECT OF COULOMB FRICTION	249
	8.14	CONCLUSION	251
REFERENCES		253	

CHAPTER 1

The Time Delay Theorem Allied to Low Order Modelling

1.1. INTRODUCTION

There is much interest at this point in time in the derivation of low order models to represent complex plant, processes, and systems. For example, a recent survey of available techniques lists 40 references, but more importantly, 38 different authors are involved, and some 28 research establishments, universities, and industrial concerns are represented (110), thus indicating a broad base for this work. Consequently, we may expect to find a wide variety of reasons for using low order models, of which the following are thought to be the most important;

- (i) To Simplify Understanding of the System, whether the problem is analysis, synthesis, or identification. An interpretation of such expressions as time constant, damping ratio, and natural frequency is second nature to the control engineer, particularly since standard curves describing performance of simple systems have been available for many years (57). It is therefore natural to attempt to reduce complex systems to such simple terms, even if considerable skill is required to obtain a realistic model.
- (ii) To Reduce Computational Requirements, which means better use of support facilities as well as the computer itself, in addition to widening the

- scope of problems which can be handled on a given size of machine. For example, if it is necessary to evaluate the transient response sensitivity to parameter variations using classical sensitivity theory, then an n order system in general requires a simulation of order 2(n+1) (105). In this instance provision of a low order model adequately describing the dynamic response completely alters the scale of the computational problem.
- (iii) To Reduce the Likelihood of Data Preparation Errors, simply on a law of averages basis, because less parameters are involved, and the range of numbers encountered reduced.
- (iv) To Make Best Use of Scanty Experimental Data, by estimating a few parameters with confidence, rather than estimating more parameters with less confidence. The low order model is then a more reliable predictor of system performance (93).
- (v) To Reduce Hardware Requirements in situations where an on-line system model is required; for example in monitoring the integrity of avionic equipment by comparing system and model outputs, or for use in self-adaptive systems. The same argument also applies to the design of reduced order state observers (38), and to the design of compensation networks (5).
- (vi) To Generalise Results established on a particular system to comparable systems, using low order models which basically differ in time scale only. This is particularly useful in tolerancing performance for system checkout (21).
- (vii) To Provide Guidelines for On-Line Interactive Modelling by selecting the most useful normalised test features, such as individual frequencies for signal injection (111).
- (viii) To Improve the Methodology of Computer Aided Control System Design, by relating a suitable low