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PREFACE

This volume was planned and written as a textbook for advanced undergrad-
uate or beginning graduate students with three primary goals. First, it was
intended to present understandable coverage at that academic level of the
advances in turbulence modeling and the application of large digital com-
puters to boundary layer problems, which have revolutionized the field over
the last two decades. None of the existing texts serve that purpose. Some have
held that modern numerical methods cannot be taught to engineering under-
graduates so that they finish the course with any usable tools. That view is
rejected here. Indeed, this writer strongly believes that the modern university
student grew up in the computer age, and that he or she finds this type of
material easier to grasp than such classical topics as Laplace transforms or
Fourier series. Repeated experience in the classroom has proven this view to
be correct. The second goal was to treat mass transfer in an integrated manner
with momentum and heat transfer. The phenomena and methods of analysis
are so similar that it seems inefficient and confusing to split convective mass
transfer off as a separate subject as has often been the practice. Finally, a
determined effort has been made throughout to relate viscous phenomena in
general to the real world.

This book is written to be applicable for courses for mechanical, aero-
space, chemical, civil, and ocean engineering students. The treatment presumes
that the student has had at least one undergraduate course in fluid mechanics.
Tables following this preface suggest coverage for a one-semester or two-
quarter course for different majors at both the advanced undergraduate and
beginning graduate levels.

xiii



xiv Preface

To achieve the goals set for coverage and length, it was necessary to omit
any discussions of unsteady flows or truly three-dimensional cases. Those
topics are, however, usually not discussed in any detail in courses at the
intended level. Further, to leave room in the book and time in the classroom
for thorough treatments of numerical methods and turbulent flows, much of
the older material on laminar flows was also omitted. Although some of that
material is quite elegant and interesting, it really has little actual use to the
practicing engineer.

There is one other somewhat unusual feature to the organization of the
material. Integral methods are introduced very early, before the derivation of
the differential equations of motion. The purpose here was to provide the
student with some tools, so that simple problems can be worked early in the
course. The author has found this to be a helpful motivating factor for the
student.

A book is a personal thing to any author and it obviously reflects his or
her individual background, experience, and current view of the subject. This
writer has been fortunate to have had the opportunity to interact with some of
the most prolific workers in the field: Robert M. Drake, Jr., George Mellor,
Antonio Ferri, Paul Libby, and Edward R. Van Driest. To them, sincere
thanks are due. Special thanks are due Roger Eichhorn, who taught me the
value of a combined experimental and analytical approach to any new bound-
ary layer problem. Finally, several people were kind enough to read early
versions of the manuscript and provide constructive comments. My thanks to
David Rooney, Heehwan Lee, George Wills, Dinshaw Contractor, Herman
Krier, Felix Pierce, and George Inger.

Joseph A. Schetz
Blacksburg, Va.
July 1982
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NOTATION

Speed of sound and amplification factor
Area or constant

Half-width

Constants

Average speed of molecules

Fluctuating value of species concentration
Species concentration

Mean value of species concentration
Constants

Specific heat at constant pressure
Specific heat at constant volume

Real and imaginary parts of the phase velocity
Skin friction coefficient

Average skin friction coefficient
Pressure coefficient

Drag coefficient

Diameter

Binary diffusion coefficient

Turbulent diffusion coefficient

Internal energy

Function of (-)
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xviii

PC’PT’PV

Pr
Pr;

qi
dr
qw

Notation

Body force vector

Acceleration of gravity

Enthalpy

Film coefficient

Film coefficient for diffusion

Shape factor

= /1

Index

Integrated momentum flux

Thermal conductivity and average roughness size
Turbulent thermal conductivity

Wave number of fluctuations

Mass transfer parameters

Constants

Turbulent kinetic energy

Kinetic energy of axial fluctuations at wave number k,
Turbulent scale length

Mixing length

Lewis number

Turbulent Lewis number

Index along surface

Diffusive mass flux of species i
Maximum value of m and Mach number
Index across layer

Maximum value of n

Nusselt number

Nusselt number for diffusion

Pressure

Partial pressure of species i

Mean pressure

Power law decay exponents
Fluctuating pressure

Prandtl number

Turbulent Prandtl number
Production of turbulent kinetic energy
Heat flux vector

Turbulent heat flux

Wall heat transfer rate



Notation Xix

r Radial coordinate and recovery factor
R Pipe radius, gas constant, and radius of curvature
Ri Richardson number

ro(x) Body radius

2 Half-radius

Re Reynolds number

s Transformed streamwise coordinate
Sc Schmidt number

Scy Turbulent Schmidt number

St Stanton number

Stpigr Stanton number for diffusion

S(A) Shear parameter

t Time

T Static temperature

T5.2 Surface force vector

T, Bulk temperature

T* Reference temperature

T Total (stagnation) temperature

Ty Time period

T Mean temperature

T Fluctuating temperature

T, Heat transfer temperature

Tt = (T, — T)/T,

u Streamwise velocity

Uyye Average velocity

U Mean velocity

U Mass-weighted mean velocity

u Fluctuating velocity

u, Friction velocity

u* = Ulu,

v Transverse or radial velocity

v, Transverse velocity at the wall

|4 Mean transverse velocity and general velocity
vg Dimensionless transverse velocity at the wall

<

Fluctuating transverse velocity
Streamwise coordinate
Mole fraction of species i

‘<_><X

Transverse coordinate
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y'=yu, /v

W(y/9)

Greek

R R
)

SO SHEE™

M

k]

y

> v

Transformed transverse coordinate
Transverse coordinate for the law of the wall
Molecular weight

Wake function

= k™"

Wave number and amplification factor

= ke/pe,

Pressure gradient parameter and wave number
Planar stream function

Axisymmetric stream function

Disturbance stream function

Dissipation of turbulent energy

Truncation error

Strain

Density

Notation

Pohlhausen pressure gradient parameter, pipe resistance

coefficient, and second viscosity coefficient
Mean free path between molecules
Thwaites—Walz pressure gradient parameter
Smith and Spalding parameter

Shear

Turbulent shear

Intermittency

Laminar viscosity

Turbulent viscosity

Constant in the law of the wall

Constant in the Temperature law of the wall
Laminar kinematic viscosity

Turbulent kinematic viscosity

Amplitude function

Boundary layer thickness

Conduction thickness

Thermal boundary layer thickness
Concentration boundary layer thickness
Displacement thickness

Kinematic displacement thickness



Notation
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Subscripts
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xxi

Momentum thickness

Excess temperature

Clauser integral boundary layer thickness
=07/

Deformation angle

Wake parameter

Dummy variable

Similarity variable

Transformed transverse coordinate
Dimensionless frequency and viscosity law exponent
“Prandtl” numbers for K, Z, ©

See Eq. (9-8)

Ratio of specific heats

Values on the centerline

Values at the edge of the boundary layer
Initial values in a jet

Stagnation values

Wall values

Conditions in the approach flow
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