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Biological sequence analysis
Probabilistic models of proteins and nucleic acids

The face of biology has been changed by the emergence of modern molecular genetics.
Among the most exciting advances are large-scale DNA sequencing efforts such as the
Human Genome Project which are producing an immense amount of data. The need to
understand the data is becoming ever more pressing. Demands for sophisticated analyses
of biological sequences are driving forward the newly-created and explosively expanding
research area of computational molecular biology, or bioinformatics.

Many of the most powerful sequence analysis methods are now based on principles
of probabilistic modelling. Examples of such methods include the use of probabilistically
derived score matrices to determine the significance of sequence alignments, the use of
hidden Markov models as the basis for profile searches to identify distant members
of sequence families, and the inference of phylogenetic trees using maximum likelihood
approaches.

This book provides the first unified, up-to-date, and tutorial-level overview of sequence
analysis methods, with particular emphasis on probabilistic modelling. Pairwise alignment,
hidden Markov models, multiple alignment, profile searches, RNA secondary structure
analysis, and phylogenetic inference are treated at length.

Written by an interdisciplinary team of authors, the book is accessible to molecular
biologists, computer scientists and mathematicians with no formal knowledge of each
others’ fields. It presents the state-of-the-art in this important, new and rapidly developing
discipline.

Richard Durbin is Head of the Informatics Division at the Sanger Centre in Cambridge,
England.

Sean Eddy is Assistant Professor at Washington University’s School of Medicine and also
one of the Principle Investigators at the Washington University Genome Sequencing Center.

Anders Krogh is a Research Associate Professor in the Center for Biological Sequence
Analysis at the Technical University of Denmark.

Graeme Mitchison is at the Medical Research Council's Laboratory for Molecular Biology in
Cambridge, England.
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Preface

At a Snowbird conference on neural nets in 1992, David Haussler and his col-
leagues at UC Santa Cruz (including one of us, AK) described preliminary re-
sults on modelling protein sequence multiple alignments with probabilistic mod-
els called ‘hidden Markov models’ (HMMs). Copies of their technical report
were widely circulated. Some of them found their way to the MRC Laboratory
of Molecular Biology in Cambridge, where RD and GJM were just switching re-
search interests from neural modelling to computational genome sequence analy-
sis, and where SRE had arrived as a new postdoctoral student with a background
in experimental molecular genetics and an interest in computational analysis. AK
later also came to Cambridge for a year.

All of us quickly adopted the ideas of probabilistic modelling. We were per-
suaded that hidden Markov models and their stochastic grammar analogues are
beautiful mathematical objects, well fitted to capturing the information buried
in biological sequences. The Santa Cruz group and the Cambridge group inde-
pendently developed two freely available HMM software packages for sequence
analysis, and independently extended HMM methods to stochastic context-free
grammar analysis of RNA secondary structures. Another group led by Pierre
Baldi at JPL/Caltech was also inspired by the work presented at the Snowbird
conference to work on HMM-based approaches at about the same time.

By late 1995, we thought that we had acquired a reasonable amount of expe-
rience in probabilistic modelling techniques. On the other hand, we also felt that
relatively little of the work had been communicated effectively to the commu-
nity. HMMs had stirred widespread interest, but they were still viewed by many
as mathematical black boxes instead of natural models of sequence alignment
problems. Many of the best papers that described HMM ideas and methods in
detail were in the speech recognition literature, effectively inaccessible to many
computational biologists. Furthermore, it had become clear to us and several
other groups that the same ideas could be applied to a much broader class of
problems, including protein structure modelling, genefinding, and phylogenetic
analysis. Over the Christmas break in 1995-96, perhaps somewhat deluded by
ambition, naiveté, and holiday relaxation, we decided to write a book on biologi-
cal sequence analysis emphasizing probabilistic modelling. In the past two years,
our original grand plans have been distilled into what we hope is a practical book.

ix



X Preface

This is a subjective book written by opinionated authors. It is not a tutorial on
practical sequence analysis. Our main goal is to give an accessible introduction
to the foundations of sequence analysis, and to show why we think the probabilis-
tic modelling approach is useful. We try to avoid discussing specific computer
programs, and instead focus on the algorithms and principles behind them.

We have carefully cited the work of the many authors whose work has influ-
enced our thinking. However, we are sure we have failed to cite others whom
we should have read, and for this we apologise. Also, in a book that necessarily
touches on fields ranging from evolutionary biology through probability theory
to biophysics, we have been forced by limitations of time, energy, and our own
imperfect understanding to deal with a number of issues in a superficial manner.

Computational biology is an interdisciplinary field. Its practitioners, including
us, come from diverse backgrounds, including molecular biology, mathematics,
computer science, and physics. Our intended audience is any graduate or ad-
vanced undergraduate student with a background in one of these fields. We aim
for a concise and intuitive presentation that is neither forbiddingly mathematical
nor too technically biological.

We assume that readers are already familiar with the basic principles of molec-
ular genetics, such as the Central Dogma that DNA makes RNA makes protein,
and that nucleic acids are sequences composed of four nucleotide subunits and
proteins are sequences composed of twenty amino acid subunits. More detailed
molecular genetics is introduced where necessary. We also assume a basic profi-
ciency in mathematics. However, there are sections that are more mathematically
detailed. We have tried to place these towards the end of each chapter, and in
general towards the end of the book. In particular, the final chapter, Chapter 11,
covers some topics in probability theory that are relevant to much of the earlier
material.

We are grateful to several people who kindly checked parts of the manuscript
for us at rather short notice. We thank Ewan Birney, Bill Bruno, David MacKay,
Cathy Eddy, Jotun Hein, and Sgren Riis especially. Bret Larget and Robert Mau
gave us very helpful information about the sampling methods they have been
using for phylogeny. David Haussler bravely used an embarrassingly early draft
of the manuscript in a course at UC Santa Cruz in the autumn of 1996, and we
thank David and his entire class for the very useful feedback we received. We are
also grateful to David for inspiring us to work in this field in the first place. It
has been a pleasure to work with David Tranah and Maria Murphy of Cambridge
University Press and Sue Glover of SG Publishing in producing the book; they
demonstrated remarkable expertise in the editing and ISTEX typesetting of a book
laden with equations, algorithms, and pseudocode, and also remarkable tolerance
of our wildly optimistic and inaccurate target dates. We are sure that some of our
errors remain, but their number would be far greater without the help of all these

people.



Preface Xi

We also wish to thank those who supported our research and our work on this
book: the Wellcome Trust, the NIH National Human Genome Research Insti-
tute, NATO, Eli Lilly & Co., the Human Frontiers Science Program Organisa-
tion, and the Danish National Research Foundation. We also thank our home
institutions: the Sanger Centre (RD), Washington University School of Medicine
(SRE), the Center for Biological Sequence Analysis (AK), and the MRC Labo-
ratory of Molecular Biology (GJIM). Jim and Anne Durbin graciously lent us the
use of their house in London in February 1997, where an almost final draft of the
book coalesced in a burst of writing and criticism. We thank our friends, fami-
lies, and research groups for tolerating the writing process and SRE’s and AK’s
long trips to England. We promise to take on no new grand projects, at least not
immediately.
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1

Introduction

Astronomy began when the Babylonians mapped the heavens. Our descendants
will certainly not say that biology began with today’s genome projects, but they
may well recognise that a great acceleration in the accumulation of biological
knowledge began in our era. To make sense of this knowledge is a challenge,
and will require increased understanding of the biology of cells and organisms.
But part of the challenge is simply to organise, classify and parse the immense
richness of sequence data. This is more than an abstract task of string parsing, for
behind the string of bases or amino acids is the whole complexity of molecular
biology. This book is about methods which are in principle capable of capturing
some of this complexity, by integrating diverse sources of biological information
into clean, general, and tractable probabilistic models for sequence analysis.

Though this book is about computational biology, let us be clear about one
thing from the start: the most reliable way to determine a biological molecule’s
structure or function is by direct experimentation. However, it is far easier to
obtain the DNA sequence of the gene corresponding to an RNA or protein than it
is to experimentally determine its function or its structure. This provides strong
motivation for developing computational methods that can infer biological infor-
mation from sequence alone. Computational methods have become especially
important since the advent of genome projects. The Human Genome Project
alone will give us the raw sequences of an estimated 70 000 to 100 000 human
genes, only a small fraction of which have been studied experimentally.

Most of the problems in computational sequence analysis are essentially sta-
tistical. Stochastic evolutionary forces act on genomes. Discerning significant
similarities between anciently diverged sequences amidst a chaos of random mu-
tation, natural selection, and genetic drift presents serious signal to noise prob-
lems. Many of the most powerful analysis methods available make use of proba-
bility theory. In this book we emphasise the use of probabilistic models, particu-
larly hidden Markov models (HMM:s), to provide a general structure for statistical
analysis of a wide variety of sequence analysis problems.

1



2 1 Introduction

1.1 Sequence similarity, homology, and alignment

Nature is a tinkerer and not an inventor [Jacob 1977]. New sequences are adapted
from pre-existing sequences rather than invented de novo. This is very fortunate
for computational sequence analysis. We can often recognise a significant simi-
larity between a new sequence and a sequence about which something is already
known; when we do this we can transfer information about structure and/or func-
tion to the new sequence. We say that the two related sequences are homologous
and that we are transfering information by homology.

At first glance, deciding that two biological sequences are similar is no dif-
ferent from deciding that two text strings are similar. One set of methods for
biological sequence analysis is therefore rooted in computer science, where there
is an extensive literature on string comparison methods. The concept of an align-
ment is crucial. Evolving sequences accumulate insertions and deletions as well
as substitutions, so before the similarity of two sequences can be evaluated, one
typically begins by finding a plausible alignment between them.

Almost all alignment methods find the best alignment between two strings
under some scoring scheme. These scoring schemes can be as simple as ‘+1 for
a match, —1 for a mismatch’. Indeed, many early sequence alignment algorithms
were described in these terms. However, since we want a scoring scheme to
give the biologically most likely alignment the highest score, we want to take
into account the fact that biological molecules have evolutionary histories, three-
dimensional folded structures, and other features which constrain their primary
sequence evolution. Therefore, in addition to the mechanics of alignment and
comparison algorithms, the scoring system itself requires careful thought, and
can be very complex.

Developing more sensitive scoring schemes and evaluating the significance of
alignment scores is more the realm of statistics than computer science. An early
step forward was the introduction of probabilistic matrices for scoring pairwise
amino acid alignments [Dayhoff, Eck & Park 1972; Dayhoff, Schwartz & Orcutt
1978]; these serve to quantify evolutionary preferences for certain substitutions
over others. More sophisticated probabilistic modelling approaches have been
brought gradually into computational biology by many routes. Probabilistic mod-
elling methods greatly extend the range of applications that can be underpinned
by useful and consistent theory, by providing a natural framework in which to
address complex inference problems in computational sequence analysis.

1.2 Overview of the book

The book is loosely structured into four parts covering problems in pairwise
alignment, multiple alignment, phylogenetic trees, and RNA structure. Figure 1.1



1.2 Overview of the book 3

Multiple RNA structure |} Probability
alignment trees

alignment

Figure 1.1 Overview of the book, and suggested paths through it.

shows suggested paths through the chapters in the form of a state machine, one
sort of model we will use throughout the book.
The individual chapters cover topics as follows:

2 Pairwise alignment. We start with the problem of deciding if a pair of se-
quences are evolutionarily related or not. We examine traditional pair-
wise sequence alignment and comparison algorithms which use dynamic
programming to find optimal gapped alignments. We give some proba-
bilistic analysis of scoring parameters, and some discussion of the statis-
tical significance of matches.

3 Markov chains and hidden Markov models. We introduce hidden Markov
models (HMMs) and show how they are used to model a sequence or
a family of sequences. The chapter gives all the basic HMM algorithms
and theory, using simple examples.

4 Pairwise alignment using HMMs. Newly equipped with HMM theory, we
revisit pairwise alignment. We develop a special sort of HMM that mod-
els aligned pairs of sequences. We show how the HMM-based approach
provides some nice ways of estimating accuracy of an alignment, and
scoring similarity without committing to any particular alignment.

5 Profile HMMs for sequence families. We consider the problem of finding se-
quences which are homologous to a known evolutionary family or su-
perfamily. One standard approach to this problem has been the use of
‘profiles’ of position-specific scoring parameters derived from a multiple
sequence alignment. We describe a standard form of HMM, called a pro-
file HMM, for modelling protein and DNA sequence families based on
multiple alignments. Particular attention is given to parameter estimation
for optimal searching for new family members, including a discussion of
sequence weighting schemes.

6 Multiple sequence alignment methods. A closely related problem is that of
constructing a multiple sequence alignment of a family. We examine
existing multiple sequence alignment algorithms from the standpoint of



4 1 Introduction

probabilistic modelling, before describing multiple alignment algorithms
based on profile HMMs.

7 Building phylogenetic trees. Some of the most interesting questions in biol-
ogy concern phylogeny. How and when did genes and species evolve?
We give an overview of some popular methods for inferring evolutionary
trees, including clustering, distance and parsimony methods. The chapter
concludes with a description of Hein’s parsimony algorithm for simulta-
neously aligning and inferring the phylogeny of a sequence family.

8 A probabilistic approach to phylogeny. We describe the application of prob-
abilistic modelling to phylogeny, including maximum likelihood estima-
tion of tree scores and methods for sampling the posterior probability
distribution over the space of trees. We also give a probabilistic interpre-
tation of the methods described in the preceding chapter.

9 Transformational grammars. We describe how hidden Markov models are
just the lowest level in the Chomsky hierarchy of transformational gram-
mars. We discuss the use of more complex transformational grammars
as probabilistic models of biological sequences, and give an introduction
to the stochastic context-free grammars, the next level in the Chomsky
hierarchy.

10 RNA structure analysis. Using stochastic context-free grammar theory, we
tackle questions of RNA secondary structure analysis that cannot be han-
dled with HMMs or other primary sequence-based approaches. These
include RNA secondary structure prediction, structure-based alignment
of RNAs, and structure-based database search for homologous RNAs.

11 Background on probability. Finally, we give more formal details for the
mathematical and statistical toolkit that we use in a fairly informal tu-
torial-style fashion throughout the rest of the book.

1.3 Probabilities and probabilistic models

Some basic results in using probabilities are necessary for understanding almost
any part of this book, so before we get going with sequences, we give a brief
primer here on the key ideas and methods. For many readers, this will be familiar
territory. However, it may be wise to at least skim though this section to get
a grasp of the notation and some of the ideas that we will develop later in the
book. Aside from this very basic introduction, we have tried to minimise the
discussion of abstract probability theory in the main body of the text, and have
instead concentrated the mathematical derivations and methods into Chapter 11,
which contains a more thorough presentation of the relevant theory.

What do we mean by a probabilistic model? When we talk about a model
normally we mean a system that simulates the object under consideration. A
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probabilistic model is one that produces different outcomes with different prob-
abilities. A probabilistic model can therefore simulate a whole class of objects,
assigning each an associated probability. In our case the objects will normally be
sequences, and a model might describe a family of related sequences.

Let us consider a very simple example. A familiar probabilistic system with
a set of discrete outcomes is the roll of a six-sided die. A model of a roll of
a (possibly loaded) die would have six parameters p; ... pe; the probability of
rolling i is p;. To be probabilities, the parameters p; must satisfy the conditions
that p; > 0 and Z?___l pi = 1. A model of a sequence of three consecutive rolls of
a die might be that they were all independent, so that the probability of sequence
[1,6,3] would be the product of the individual probabilities, p; pe p3. We will use
dice throughout the early part of the book for giving intuitive simple examples of
probabilistic modelling.

Consider a second example closer to our biological subject matter, which is an
extremely simple model of any protein or DNA sequence. Biological sequences
are strings from a finite alphabet of residues, generally either four nucleotides or
twenty amino acids. Assume that a residue a occurs at random with probability
qa, independent of all other residues in the sequence. If the protein or DNA
sequence is denoted x; ...x,, the probability of the whole sequence is then the
product gx,Gx, " *qx, = [ 1= gx-' We will use this ‘random sequence model’
throughout the book as a base-level model, or null hypothesis, to compare other
models against.

Maximum likelihood estimation

The parameters for a probabilistic model are typically estimated from large sets
of trusted examples, often called a training set. For instance, the probability
q. for amino acid a can be estimated as the observed frequency of residues in
a database of known protein sequences, such as SWISS-PROT [Bairoch & Ap-
weiler 1997].We obtain the twenty frequencies from counting up some twenty
million individual residues in the database, and thus we have so much data that
as long as the training sequences are not systematically biased towards a pecu-
liar residue composition, we expect the frequencies to be reasonable estimates
of the underlying probabilities of our model. This way of estimating models is
called maximum likelihood estimation,because it can be shown that using the fre-
quencies with which the amino acids occur in the database as the probabilities
q. maximises the total probability of all the sequences given the model (the like-
lihood). In general, given a model with parameters 6 and a set of data D, the
maximum likelihood estimate for 6 is that value which maximises P(D|@). This
is discussed more formally in Chapter 11.

When estimating parameters for a model from a limited amount of data, there

! Strictly speaking this is only a correct model if all sequences have the same length, because
then the sum of the probability over all possible sequences is 1; see Chapter 3.
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is a danger of overfitting, which means that the model becomes very well adapted
to the training data, but it will not generalise well to new data. Observing for
instance the three flips of a coin [tail, tail, tail] would lead to the maximum
likelihood estimate that the probability of head is 0 and that of ail is 1. We will
return shortly to methods for preventing overfitting.

Conditional, joint, and marginal probabilities

Suppose we have two dice, D; and D,. The probability of rolling an i with die
D, is called P(i|D;). This is the conditional probability of rolling i given die D;.
If we pick a die at random with probability P(D;), j = 1 or 2, the probability for
picking die j and rolling an i is the product of the two probabilities, P(i, D;) =
P(D;)P(i|D;). The term P(i, D;) is called the joint probability. The statement

P(X,Y)=P(X|Y)P(Y) (1.1)

applies universally to any events X and Y.
When conditional or joint probabilities are known, we can calculate a marginal
probability that removes one of the variables by using

P(X)=) P(X,Y)=)_ P(X|Y)P(Y),
Y Y
where the sums are over all possible events Y.

Exercise

1.1 Consider an occasionally dishonest casino that uses two kinds of dice. Of
the dice 99% are fair but 1% are loaded so that a six comes up 50% of the
time. We pick up a die from a table at random. What are P(six|Djpaded)
and P(six|Dgjr)? What are P(siX, Digaded) and P(six, Dgir)? What is
the probability of rolling a six from the die we picked up?

Bayes’ theorem and model comparison

In the same occasionally dishonest casino as in Exercise 1.1, we pick a die at
random and roll it three times, getting three consecutive sixes. We are suspicious
that this is a loaded die. How can we evaluate whether that is the case? What we
want to know is P(Djoaded|3 sixes); i.e. the posterior probability of the hypothesis
that the die is loaded given the observed data, but what we can directly calculate
is the probability of the data given the hypothesis, P(3 sixes|Djoaded), Which is
called the likelihood of the hypothesis. We can calculate posterior probabilities
using Bayes’ theorem,
P(Y|X)P(X)
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The event ‘the die is loaded’ corresponds to X in (1.2) and ‘3 sixes’ corresponds
toY, so
P (3 sixes| Dioaded) P (Dioaded)

P(3 sixes) ’

P (Dioaded|3 sixes) =

We were given (see Exercise 1.1) that the probability P(Djgaded) Of picking a
loaded die is 0.01, and we know that the probability P(3 sixes|Djoaded) of three
sixes given it is loaded is 0.5° = 0.125. The total probability of three sixes,
P (3 sixes), is just P (3 sixes| Dioaded) P (Dioaded) + P (3 sixes| Dsair) P( Diair). Now

(0.5%)(0.01)

(0.5%(0.01) + (17)(0.99)
= 021.

P(Dipaded|3 sixes) =

So in fact, it is still more likely that we picked up a fair die, despite seeing three
successive sixes.

As a second, more biological example, let us assume we believe that, on aver-
age, extracellular proteins have a slightly different amino acid composition than
intracellular proteins. For example, we might think that cysteine is more com-
mon in extracellular than intracellular proteins. Let us try to use this information
to judge whether a new protein sequence x = x;...x, is intracellular or extra-
cellular. To do this, we first split our training examples from SWISS-PROT into
intracellular and extracellular proteins (we can leave aside unclassifiable cases).

We can now estimate a set of frequencies q}l‘“ for intracellular proteins, and a
corresponding set of extracellular frequencies g-*. To provide all the necessary
information for Bayes’ theorem, we also need to estimate the probability that any
new sequence is extracellular, p, and the corresponding probability of being
intracellular, p'™. We will assume for now that every sequence must be either
entirely intracellular or entirely extracellular, so p'™ = 1 — p®™'. The values p
and p™ are called the prior probabilities, because they represent the best guess
that we can make about a sequence before we have seen any information about
the sequence itself.

We can now write P(x|ext) =[], g5 and P(x|int) = IL q_ir"“. Because we
are assuming that every sequence must be extracellular or intracellular, p(x) =
p™ P(x|ext)+ p'™ P(x|int). By Bayes’ theorem,

pCX‘ l_[ qext
i 1x;
peXt l‘[ qet 4 pim n qint ’
i 1x; i 1x;
P(ext|x) is the number we want. It is called the posterior probability that a
sequence is extracellular because it is our best guess after we have seen the data.
Of course, this example is confounded by the fact that many transmembrane

proteins have intracellular and extracellular components. We really want to be
able to switch from one assignment to the other while in the sequence. That

P(ext|x) =




