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' JEAN BAPTISTE JOSEPH -F‘OURIER was born in Auxerre, about 100vm11es.
south of Paris, on March 21, 1768. His fame is ‘based on his mathematical theory -
-,of heat conduction, a theory involying expansions of arbltrary functions in certain

. types of ttigonometric series. Although such expansions had ‘been investigated

earlier, they bear his name because of his major contributions. Fourier series are

now fundamental tools in smence and thlS book isan mtroductmn to their theory
and apprlxcatlons

Fourier’s life was varied and difficult at tlmes Orphaned by the age of 9 he
became mterested in mathematics at a military school run by the Benedictines in

Auxerre. He was an active supporter of the' Revolution and narrowly escaped = -

imprisonment and execution on more than one occasion. After the Revolution,
Fourier accompanied Napoleon to Egypt in order to set up an educational institu-
tion in the newly conquered territory. Shortly after the French withdrew in 1801,

- Napoleon appointed Fourier prefect of a department in southern .France with

headquarters in Grenoble.
It was in Grenoble that Fourier d1d his most” 1mportant sc1ent1ﬁc work Since
his professional life was almost equally divided between politics and science and
since it was so intimately geared to the Revolution-and Napoleon his advancement
of the frontiers of mathematical science is qulte remarkable. - :
The final years of Fouriér’s life were spent in Paris, where he was Secretary

+ . of the Académie des Sciences and succeeded Laplace as President of the Council

of the Ecole Polytechmque He died at the age of 62 on May 16, 1830.
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P, PREFACE

This is an introductorv treatment of Fourier series and their applicafions to
boundary value problems in partial differential equations of engineering and
physics. It is designed for students who have completed a first course in ordinary
differential equations and the equivalent of a térm of advanced calculus. In order
that the book be accessible to as great a variety of students as possible, there are
footnotes referring to texts which give proofs of the more delicate results in
advanced calculus that are occasionally needed. The physical applications, ex-
plained in some detail, are kept on a fairly elementary level.

The first objective of the book is to introduce the concept of orthogonal sets of
functions and representations of arbitrary{functions in series of functions from
such sets. Representations of functions by Fourier series, involving sine and
cosine functions, are given special attention. Fourier integral representations and
expansions in series of Bessel functions and Legendre polynomials are also treated.

The second objiective is a clear presentation of the classical method of separa-
tion of variables used in solving boundary value problems with the aid of those
representations. Some attention is given to the verification of solutions and to
uniqueness of solutions: for the method cannot be presented properly without
such considerations. Other methods are treated in the authors’ book Complex
Variables and Applications and in the first author’s book Operational Mathematics.

This book is a revision of the 1978 edition,; the first two editions were published
in 1963 and 1941 and were written by the first author alone. Considerable attention
has been given here to improving the exposition, and there are almost twice as
many figures as in the last edition. Also, examples are now clearly labeled as such:.
There has been some reordering of chapters so that, in this edition, the chapter
on boundary value problems involving Fourier series is reached earlier. The
theory of Sturm-Liouville problems is now developed after the simpler Sturm-
Liouville problems leading to Fourier series have become thoroughly familiar
to the reader.

The chapters on Bessel functions and Legendre polynomials, Chapters 8 and
9, are essentially independent of each other and can be taken up in either order.

ix
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The last three sections of Chapter 3, on further properties of Fourier series, and
Chapter 10, on uniqueness of solutions, can be omifted to shorten the course;
this also applies to some sections of other chapters.

In preparing this edition, the authors have benefited from the comments of a
variety of people, many of whom are colleagues and students at The University
of Michigan. Thanks are also due to R. P. Boas, Jr. and G. H. Brown for furnishing
some cf the references that are cited in the footnotes; and the derivation of the
laplacian in spherical coordinates that is given was suggested by a note of R. P.
Agnew’s in the American Mathematical Monthly, vol. 60 (1953). The authors
are especially indebted to V. C. Williams and R. E. Lynch, whose careful reading
of the manuscript of this edition led to many improvements, and to P. R. Devine
and R. A. Weinstein, who served as editors of the project.

Ruel V. Churchill
James Ward Brown
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CHAPTER

ONE

PARTIAL DIFFERENTIAL EQUATIONS OF PHYSICS

1. TWO RELATED TOPICS

This book is concerned with two general topiés:

(a) one is the representation of an arbitrary function by an infinite series of func-
tions from a prescribed set;
(b) the other is a method of solving boundary value problems in partial differential

equations, with emphasis on equations that are prominent in physics and
engineering.

Representations by series are encountered in solving boundary value problems.
The theories of those representations can be presented independently. They have
such attractive features as the extension of concepts of geometry, vector analysis,
and algebra into the field of mathematical analysis. Their mathematical precisipn
is also pleasing. But they gain in unity and interest when presented in connection
with boundary value problems.

The set of functions that make up the terms in the series representation is
determined by the boundary value problem. Representations by Fourier series,
which are certain types of series of sine and cosine functions, are associated with a
large and important class of boundary value problems. We shall give special
attention to the theory and application of Fourier series. But we shall also consider
extensions and generahzatlons of such series, concentrating on Fourier mtegrals
and series of Bessel functions and Legendre polynomials.

A boundary value problem is correctly set if it has one and only one solution
within a given class of functions. Physical interpretations often suggest boundary
conditions under which a problem may be correctly set. In fact, it is sometimes
helpful to interpret a problem physically in order to judge whether the boundary
conditions may be adequate. This is a prominent reason for associating such
problems with their physical applications, aside from the opportunity to illustrate
connections betwcen mathentatical analysis and the physical sciences.
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The theory of partial differential equations gives results on the existence and
uniqueness of solutions of boundary value problems. But such results are neces-
sarily limited and complicated by the great variety of types of differential equations
and domains on which they are defined, as well as types of boundary conditions.
Instead of appealing to general theory in treating a specific problem, our approach
will be to actually find a solution, which can often be shown to be the only one
possible.

2. LINEAR BOUNDARY VALUE PROBLEMS

In the theory and application of ordinary or partial differential equations, the
dependent variable, denoted here by u, is usually required to satisfy some condi-
tions on the boundary of the domain on which the differential equation is defined.
The equations that represent those boundary conditions may involvé values of
derivatives of u, as well as u itself, at points on the boundary. In addition, some
conditions on the continuity of u and its derivatives within the dom¥ain and on
the boundary are required.

Such a set of requirements constitutes a boundary value problem in the function
u. We apply that term whenever the differential equation is accompanied by some
boundary conditions, even though the conditions may not be adequate to ensure a
unique solution of the problem.

Example 1. The three equations
u'x) —u(x) = -1 0<x<l),
WO0)=0, " u)=0

constitute a boundary value problem in ordinary differential equations. The
differential equation is defined on the domain 0 < x < 1, whose boundary points
are x = 0 and x = 1. A solution of this problem which, together with each of its
derivatives, is continuous on the closed interval 0 < x < 1 is ;

(1)

cosh x
(2) u(x)—l —m.
Solution (2) is easily verified by direct substitution.

Frequently, it is convenient to indicate partial differentiation by writing inde-
pendent variables as subscripts. If, for instance, u is a function of x and y, we may
write .

I~ 2 N2
ou u oTu
u, or u/x,y) for —, u,, for=—, Uy, for ——
i <069 Ox O O Oy ox
etc. We shall always assume that the partial derivatives of u satisfy conditions
allowing us to write u,, = u,,.
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Also, we shall be free to use the symbols u,(c,y) and u,.(c,y) to denote values
of the functions du/dx and d%u/dx?, respectively, on the line x = ¢. Corresponding

symbols will be used for boundary values of other derivatives.

Example 2. The problem consisting of the partial differential equation

() Upe(X,¥) + Uyy(x,y) = 0 (x>0,y>0)
and the two boundary conditions

u(0,y) = u,(0.y) (y>0),
@ u(x,0) = sin x + cos x (x=0)

is a boundary value problem in partial differential equations. The differential
equation is defined in the first quadrant of the xy plane. As the reader can readily
verify, the function

(5) ' u(x,y) = e (sin x + cos x)

is a solution of this problem. The function (5) and its partial derivatives of the
first and second order are continuous in the region x = 0, y = 0.

A differential equation in a function u, or a boundary condition on u, is linear
if it is an equation of the first degree in u and derivatives of u. Thus the terms of
the equation are either prescribed functions of the independent variables alone,
including constants, or such functions multiplied by u or a derivative of u. Note
that the general linear partial differential equation of the second order in u(x, y) has
the form

(6) Au,, + Bu,, + Cuy, + Du, + Eu, + Fu = G,

where the letters A through G denote either constants or functions of the inde-
pendent variables x and y only.

The differential equations and boundary conditions in Examples 1 and 2 are,
evidently, all linear. The differential equation

7 ZUyg, + xViuy, — e*u, = f(y,2)

is linear in u(x,y,z); but the equation u,, + uu, = x is nonlinear in u(x,y) because
the term uu, is not of the first degree as an algebraic expression in the two variables
u and u, [compare equation (6)].

A boundary value problem is linear if its differential equation and all of its
boundary conditions are linear. The boundary value problems in Examples 1 and 2
are, therefore, linear. :

The method of solution presented in‘this book does not apply to nonlinear
problems.

A linear differential equation or boundary condition in u is homogeneous if
each of its terms, other than zero itself, is of the first degree in the function u and
its derivatives. Homogeneity will play a central role in our treatment of linear
boundary value problems.
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Observe that equation (3) and the first of conditions (4) are homogeneous but
that the second of those conditions is not. Equation (6) is homogeneous in a
domain of the xy plane only when the function G is identically zero (G = 0) through-
out that domain; and equation (7) is nonhomogeneous unless f(y,z) = 0 for all
values of y and z being considered.

" 3. THE VIBRATING STRING

A lightl) stretched string, whose position of equilibrium is some interval on the
x axis, is vibrating in the xy plane. Each point of the string, with coordinates (x,0)
in the equilibrium position, has a transverse displacement y = y(x,t) at time .
We assume that the displacements y are small rélative to the length of the string,
that slopes are small, and that other conditions are such that the movement of

. each point is parallel to the y axis. Then, at time ¢, a point on the string has co-

ordinates (x,y) = (x,y(x,t)).

Let the tension of the string be great enough that the string behaves as if it
were perfectly flexible. That is, at a point (x,y) on the string, the part of the string
to the left of that point exerts a force T, in the tangential direction, on the part to

, the right; and any resistance to bending at the point is to be neglected. The magni-

tude of the x component of the tensile force T is denoted by H. See Fig. 1, where
that x component has the same positive sense as the x axis. Our final assumption
here is that H is constant. That is, the varlauon of H with respect to x and 1 can’
be neglected.

These idealizing assumptions are severe, but they are justified in many applica-
tions. They are adequately satisfied, for instance, by strings of musical instruments
under ordinary conditions of operation. Mathematically, the assumptions will
lead us to a partial differential equation in y(x,t) that is lineat.

Now let V(x,t) denote the y component of the tensile force T exerted by the
left-hand portion of the string on the right-hand portion at the point (x,y). We
take the positive sense of V as that of the y axis. If « is the angle of inclination of

.
\

o T
B
=

Figure 1
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the string at the point (x,y) at time ¢, then
— V(xt)

= tan a = y,(x,t). T ]

(1

This is ind.icated in Fig. 1, where V(x,t) < 0 and y.(x,t) > 0. If V(x,t) > 0, then
n/2 < a < mand y,(x,t) < 0;and a similar sketch shows that - '
V(x,t)
H

=tan(n — a) = — tano = — Velx,t).

Hence relations (1) still hold. Note, too, that y,(x,t) = 0 when V(x,t) = G, since
a = 0 then. It follows from relations (1) that the y component V(x,t) of the force
exerted at time § by the part of the string to the left of a point (x,y) on the pdrt/to
the right is given by the equation ‘

2) Vixt) = —Hy(x1) .t (H > 0),

which is basic for deriving the equation of motion of the string. Equation (2) is
also used in setting up certain types of boundary conditions. =

Suppose that all external forces such as the weight of the string and resistance
forces, other than forces at the end points, can be neglected. Consider a segment °
of the string not containing an end point and whose projection onto the x axis
has length Ax. Since x components of displacements are negligible, the mass of.
the segment is & Ax, where the constant ¢ is the mass per unit length of the string.
At time t, the y component of the force exerted by the string on the segment at

“the left-hand end (x,y) is V(x.t), given by equation (2). The tangential force S

exerted on the other end of the segment by the part of the string to the right is
also indicated in Fig. 1. Its y component V(x + Ax, t) evidently satisfies the relation
V(ix + Ax,t)

H

where f is the angle of inclination of the string at that other end of the segment.
That is,

= tan f3,

(3) ‘ RRdtE: Ax,t).= Hy,(x + Ax, 1) (H > 0).
Note that, except for a mipus sign, this is i;duation (2) when the argument x there
is replaced by x + Ax. - £ U

Now the acceleration of the end (x,y) in the y direction is y,,(x,t). Consequently,
by Newton's second law of motion (mass times acceleration equals force), it
follows from equations (2) and (3) that .

) 5 Ax yalxt) = — Hy,(%0) + Hy.(x + Ax.1),

approximately, when Ax is small. Hence

H i yelx + Ax, 1) — yelxt) H ()
rxt) == li = — x,t)
y,-,(x,t) 0 AXTO Ax é Yy 5

whenever these partial derivatives exist.
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Thus the function y(x,t), which represents the transverse displacements in a
streiched string under the conditions stated above, satisfies the one-dimensional
wave equation

(S) . y,,(x,t) = azyxx(xJ) ((12 o H/(S)

The constant a has the physical dimensions of velocity.
One can choose units for the time variable so that a = 1 in the wave equation.
More precisely, if we make the substitution t = at, the chain rule shows that
dy oy’ 0%y o ( oy %y
—=a— and —5=a_—(a=)=ada—5.
ot ot ot? ot 2

Equation (5) then becomes y,, = y,,.

4. MODIFICATIONS AND END CONDITIONS

When external forces parallel to the y axis act along the string, we let F denote
the force per unit length of string, the positive sense of F being that of the y axis.
Then a term F Ax must be added on the right-hand side of equation \ ), Sec. 3,
and the equation of motion is

(1 Yalx,t) = @y, (x.0) + ‘;

In particular, with the y axis vertical and its positive sense upward, suppose
that the external force consists of the weight of the string. Then F Ax = —6 Ax g,
where the positive constant ¢ is the acceleration due to gravity; and equation (1)

" becomes the linear nonhomogencous equation

(2) yli{x»;) = azyxx(-xvt) - g

In equation (1), ' may be a function of x, ¢, y, or derivatives of y. If the external
force per unit length is a damping force proporiional to the velocity in the y direc-
tion, for exampie, F is replaced by — By,, where the positive constant B is adamping
coefficient. Then the equation of motion is linear and homogeneous:
(3) YulX1) = @y (x,1) — by,(x,t) (b = B/d).

If an end x = 0 of the string is kept fixed at the origin at all times t > 0, the
.boundary condition there is clearly

4 wW0,t) =0 (t = 0).

But if that end is permitted to slide along the y axis and if the end is moved along
that axis with a displacement f(¢), the boundary condition is the linear non-
homogeneous one

(5) W00 = f(1) (t=0).

Suppose that the left-hand end is attached to a ring which can slide along the
y axis. When a force F(2) (¢t > 0) in the y direction is applied to that end, F(¢) is



