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PREFACE

The topic of this book is a mathematical description of Newtonian compressible
fluids in the steady and unsteady regime. The history of attempts to describe
rigorously the flow of a compressible fluid covered a long time beginning from
observations of L. Euler in the middle of the 18th century and of C. Navier
(Navier, 1827), H. Poisson (Poisson, 1829) and G. Stokes (Stokes, 1845) in the
first half of the 19th century, and continue up to now. Despite the fact that the
governing equations, called the Euler equations (in the inviscid case) and Navier—
Stokes equations (in the viscous case), have been known for a very long time we
are far from being satisfied with the completeness of their mathematical analy-
sis (in both cases). Nevertheless the considerable effort of outstanding analysts
cited throughout the book brought its fruits and a great number of nontrivial
results for compressible fluids has been achieved. This book is an attempt to
map the situation in the mathematical theory of compressible flow and present
important and up-to-date results in a clear instructive form accessible to a wide
audience despite the sophisticated techniques used to overcome modest a priori
information derived directly from the equations.

We started with the realization of a rather different project including also a
numerical treatment of the Euler and Navier-Stokes equations with M. Feistauer
and J. Felecman around 1998. It soon appeared that the scope was too large for
one monograph and so we accepted with great relief the proposal from Oxford
University Press to split the book into two separate monographs, the first of
which (Feistauer et al., 2003) has already been published.

As already mentioned, the book covers Newtonian compressible fluids, more
specifically Euler equations and Navier-Stokes equations in isentropic or barotro-
pic regimes. We do not deal with heat conducting flows except for references to
results for small data (that is under the assumption that appropriate norms
of the given quantities are small enough). There is currently beeing published a
research monograph by E. Feireis] (Feireisl, 2003 a) devoted to this subject. There
is a vast literature about different kinds of non-Newtonian fluids and we do not
go into this business at all. So in this respect the present monograph covers only
a part of the available mathematical results for compressible fluids.

We have adopted a textbook style. Even well-known basic theorems are re-
called in the introductory chapter. This makes the book essentially selfcontained.
There are sections called heuristic approach, where we describe the main ideas
of proofs. These sections may be sufficient for an experienced reader to under-
stand the subject without wasting time in numerous details. On the other hand,
less experienced readers, nonspecialists and students will find in the book even
standard technical details.

Let us briefly describe the contents. We start with the introductory Chapter 1,
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where different models for compressible fluids are derived and some fundamental
mathematical results are surveyed. The results are given without proofs but
detailed references are given there.

Chapter 2 surveys the theoretical aspects of the Euler system for inviscid
compressible fluids with the necessary background from the theory of hyperbolic
conservation laws. Representative local and global existence results are proved
in detail, relying on recent publications, to give the present state of affairs. The
generality here is modest, and this is mostly due to the lack of results for the
Euler equations.

Chapter 3 is preparatory for the subsequent treatment of Navier—Stokes sys-
tems. Some specific mathematical tools for these equations, adjusted especially
to steady equations, are developed here. The proofs, unlike Chapter 1, are mostly
given and only in a few cases are they cited.

Chapter 4 is devoted to the theory of weak solutions for steady Navier—-Stokes
systems for compressible fluids with large data (that is without the restriction
described above as the assumption of small data) in the barotropic regime. A
complete and detailed proof of the existence of weak solutions is given and mod-
ifications for unbounded and exterior domains as well as for different boundary
conditions are discussed thoroughly. A survey of known results on this issue is
given in the bibliographic remarks.

Chapter 5 concerns strong solutions of steady Navier—Stokes equations. The
existence of regular solutions is proved, paid for by the assumption of small data.
Note that unconditional regularity of solutions both for steady and nonsteady
equations is not known.

Chapter 6 again collects advanced mathematical tools, now adjusted to non-
steady problems. This includes properties of abstract functions in Bochner spa-
ces, commutators and the study of the (renormalized) equation of continuity.

Chapter 7 is mainly devoted to the weak existence theory for nonsteady
Navier—Stokes equations in the barotropic regime. Again a discussion of different
regions and boundary conditions is included.

In Chapter 8, the global behavior of solutions in time is investigated and the
related equilibrium problem is described.

In the final Chapter 9, the existence of strong solutions for nonsteady Navier—
Stokes equations is studied and available existence and uniqueness results are
reviewed.

Chapter 2 dealing with the Euler equations is essentially self-contained and
can be read independently of the other chapters. The same is true for Chapter 4
which deals with weak solutions of steady barotropic Navier—Stokes equations
(and which requires only Chapter 3 to be exhaustive) and for Chapter 7 deal-
ing with weak solutions of nonsteady barotropic Navier—Stokes equations (which
needs only Chapter 3 and Section 4.4 of Chapter 4 to form a complete treat-
ment). Each of Chapters 5 (about strong solutions for steady equations), 8 (about
large time behavior of weak solutions) and 9 (about strong solutions in the non-
steady regime) are essentially self-contained as well. Also, we attempt to treat all
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investigated systems in a uniform way taking into account their common nature.

We are grateful to E. Feireisl, G. P. Galdi, J. Heywood, P. Krejéi, V. Lovicar,
J. Malek, S. Nazarov, J. Necas, J. Neustupa, S. Novo, M. Padula, P. Penel,
H. Petzeltovd, K. Pileckas, M. Pokorny, M. Ruzicka, R. Salvi, A. Sequeira,
A. Valli and A. Zlotnik, who are coauthors with at least one of us of several
papers. We enjoyed working with them on more than one problem related to the
subject.

In particular, we wish to express warm thanks to our friends who helped us
to manage the task of the book project by reading the manuscript and with
numerous valuable discussions; in alphabetical order: E. Feireisl, J. Heywood,
S. Novo, M. Pokorny. Warm thanks also to S. Novotna who typeset, with care,
part of the manuscript and compiled the bibliography.

Secondly, we would like to acknowledge three stays in Mathematisches For-
schungsinstitut in Oberwolfach in the program Research in Pairs which helped
us very much in the coordination of our work. We also thank the Grant Agency
of the Czech Republic for financial support from projects nos. 201/02/0684,
201/02/0854, and the Czech and French Ministry of Education for support in
the frame of project Barrande 99, no. 99004.

Our special thanks go, of course, to our families, without whose support we
would not have been able to complete this extensive project.

Carqueiranne and Prague,
September 2003 A.N. &I S.
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