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Preface
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Property-Driven Statistics of Biological
Networks

Pierre-Yves Bourguignon®, Vincent Danos?, Francois Képes3,
Serge Smidtas!, and Vincent Schichter!

! Genoscope
2 CNRS & Université Paris VII
3 CNRS

Abstract. An analysis of heterogeneous biological networks based on
randomizations that preserve the structure of component subgraphs is in-
troduced and applied to the yeast protein-protein interaction and tran-
scriptional regulation network. Shuffling this network, under the constraint
that the transcriptional and protein-protein interaction subnetworks are
preserved reveals statistically significant properties with potential biologi-
calrelevance. Within the population of networks which embed the same two
original component networks, the real one exhibits simultaneously higher
bi-connectivity (the number of pairs of nodes which are connected using
both subnetworks), and higher distances. Moreover, using restricted forms
of shuffling that preserve the interface between component networks, we
show that these two properties are independent: restricted shuffles tend to
be more compact, yet do not lose any bi-connectivity.

Finally, we propose an interpretation of the above properties in terms
of the signalling capabilities of the underlying network.

1 Introduction

The availability of genome-scale metabolic, protein-protein interaction and reg-
ulatory networks [25,7,3,5,21] —following closely the availability of large graphs
derived from the Internet hardware and software network structure, from social
or collaborative relationships— has spurred considerable interest in the empir-
ical study of the statistical properties of these ‘real-world’ networks. As part
of a wider effort to reverse-engineer biological networks, recent studies have fo-
cused on identifying salient graph properties that can be interpreted as ‘traces’
of underlying biological mechanisms, shedding light either on their dynamics
(23,11,6,28] (i.e., how the connectivity structure of the biological process re-
flects its dynamics), on their evolution [10,30,27] (i.e., likely scenarios for the
evolution of a network exhibiting the observed property or properties), or both
[9,14,15]. The statistical graph properties that have been studied in this context
include the distribution of vertex degrees [10,9], the distribution of the clus-
tering coefficient and other notions of density [17,18,19,22.4], the distribution
of vertex-vertex distances [22], and more recently the distribution of network
motifs occurrences [15].

C. Priami and G. Plotkin (Eds.): Trans. on Comput. Syst. Biol. VI, LNBI 4220, pp. 1-15, 2006.
© Springer-Verlag Berlin Heidelberg 2006



2 P.-Y. Bourguignon et al.

Identification of a salient property in an empirical graph —for example the
fact that the graph exhibits a unexpectedly skewed vertex degree distribution—
requires a prior notion of the distribution of that property in a class of graphs
relatively to which saliency is determined. The approach chosen by most authors
so far has been to use a random graph model, typically given by a probabilistic
graph generation algorithm that constructs graphs by local addition of vertices
and edges [20,1,24]. For the simplest random graph models, such as the classical
Erdos-Rényi model (where each pair of vertices is connected with constant prob-
ability p, [2]), analytical derivations of the simplest of the above graph properties
are known [20,1].

In the general case, however, analytical derivation is beyond the reach of
current mathematical knowledge and one has to retort to numerical simulation.
The random graph model is used to generate a sample of the corresponding class
of graphs and the distribution of the graph property of interest is evaluated on
that sample, providing a standard against which the bias of the studied graph
can be measured [23,14,29]. Perhaps because of the local nature of the random
graph generation process, it is mostly simple local network properties that have
been successfully reproduced in that fashion. Another, somewhat more empirical,
category of approaches reverses the process: variants are generated from the
network of interest using a random rewiring procedure. The procedure selects
and moves edges randomly, preserving the global number of edges, and optionally
their type, as well as local properties such as the degree of each vertex. Rewirings
are thus heuristic procedures which perform a sequence of local modifications on
the structure of the network.

The specific focus of the present paper is on measuring the degree of coopera-
tion between the two subgraphs of the yeast graph of interactions induced by the
natural partition of edges as corresponding either to transcriptional interaction
(directed) or to protein protein interaction (undirected). To evaluate a poten-
tial deviation with respect to such a measure, one needs as a first ingredient a
suitable notion of random variation of the original graph. The goal is here, as
in many other cases, to contrast values of a given observable on the real graph,
against the distribution of those same values in the population of variants. We
define shuffles of the original graph as those graphs that are composed exactly
of the original two subgraphs of interest, the variable part being the way these
are ‘glued’ together.

From the probabilistic point of view, this notion of randomisation coincides
with a traditional Erdos-Renyi statistics, except that it is conditioned by the
preservation of the original subgraphs. Designing a generative random graph
model that would only yield networks preserving this very precise property seems
to be a hard endeavor ; it is not as easy as in the unconditional Erdos-Renyi
model to draw edges step by step yet ensure that component subgraphs will be
obtained in the end. Shuffling might also be seen as rewiring, except the invari-
ant is large-scale and extremely precise: it is not edges that are moved around
but entire subgraphs. Moving edges independently would break the structure of
the subnetworks, and designing a sequential rewiring procedure that eventually
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recovers that structure is not an obvious task. Moreover, it would be in general
difficult to ensure the uniformity of the sample ; see [16] for a thorough analysis
of rewiring procedures. This choice of an invariant seems rather natural in that
one is interested in qualifying the interplay between the original subgraphs in
the original graph. Now, it is not enough to have a sensible notion of randomi-
sation, it is also crucial to have a computational handle on it. Indeed, whatever
the observable one wants to use to mark cooperation is, there is little hope of
obtaining an analytic expression for its distribution, hence one needs sampling.
Fortunately, it turns out it is easy to generate shuffles uniformly, since these
can be described by pairs of permutations over nodes, so that one can always
sample this distribution for want of an exact expression. As explained below in
more details, the analysis will use two different notions of subgraph-preserving
sampling: general shuffles, and equatorial ones that also preserve the interface
between our two subgraphs. Equatorial shuffles are feasible as well, and in both
cases the algorithms for sampling and evaluating our measures turn out to be fast
enough so that one can sweep over a not so small subset of the total population
of samples.

Regarding the second necessary ingredient, namely which observable to use to
measure in a meaningful way the otherwise quite vague notion of cooperation,
there are again various possibilities. We use two such observables in the present
study: the connectivity, defined as the percentage of disconnected pairs of nodes,
and a refined quantitative version of connectivity, namely the full distance dis-
tribution between pairs of nodes. The latter is costlier, requiring about three
hours of computation for each sample on a standard personal computer.

Once we have both our notion of randomisations and our observables in place,
together with a feasible way of sampling the distribution of the latter, we can
start. Specifically we run four experiments, using general or equatorial shuffling,
and crude or refined connectivity measures. The sampling process allows us to
compare the values of these measures for the original graph with the mean value
for the sample, and, based on the assumption that those values follow a normal
distribution over the sample, one can also provide a p-value that gives a rough
estimate of the statistical deviation of the observable in the given graph.

The general shuffle based experiments show with significant statistical con-
fidence that shuffling reduces connectivity (1), and at the same time contracts
distances (2). More precisely, both bi-connectivity (the amount of pairs of nodes
which are connected using both subgraphs) and distances are higher than average
in the real network. A first interpretation might be that the real graph is trading
off compactness for better bi-connectivity. In order to obtain a clearer picture
and test this interpretation, we perform two other experiments using equato-
rial shuffles. Surprisingly, under equatorial shuffles connectivity hardly changes,
while the global shift to shorter distances is still manifest. It seems therefore there
is actually no trade-off, and both properties (1) and (2) have to be thought of
as being independently captured by the real graph. With appropriate caution,
we may try to provide a biological interpretation of this phenomenon. Since all
notions of connectivity and distances are understood as directed, we propose to
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relate this to signalling, and interpret bi-connectivity as a measure of the capa-
bility to convey a signal between subgraphs. With this interpretation, the above
properties may be read as:(1) signal flows better than average and (2) signal is
more specific than average. The second point requires explanation. At constant
bi-connectivity, longer average distances imply that upon receipt of a signal, the
receiver has a better chance of guessing the emitter. In other words, contraction
of distances (which can be easily achieved by using hubs) will anonymise signals,
clearly not a desirable feature in a regulatory network. Of course this is only part
of the story, since some hubs will also have an active role in signal integration
and decision making. The latter is probably an incentive for compactness. If our
reading of the results is on track, we then may think of the above experiments as
showing that the tropism to compactness due to the need for signal integration,
is weaker than the one needed for signal specificity.

Beyond the particular example we chose to develop here because of the wealth
of knowledge available on the yeast regulatory and protein interaction networks,
one can think of many other applications of the shuffling methodology for het-
erogeneous networks. The analyses performed here rely on edges corresponding
to different types of experimental measurements, but edges could also represent
different types of predicted functional links. Indeed, there are many situations
where a biological network of interactions can be naturally seen as heteroge-
neous. Besides, the notions of shuffle we propose can also accomodate the case
where one would use a partition of nodes, perhaps given by clustering, or local-
isation, or indeed any relevant biological information, and they may therefore
prove useful in other scenarios.

The paper is organised as follows: first, we set up the definitions of edge-
based general and equatorial shuffles based, and also consider briefly node-based
shuffles though these are not used in the sequel; then we describe the interaction
network of interest and the way it was obtained; finally we define our observables
and experiments, and interpret them. In the conclusion, we discuss generalization
and potential applications of the method. The paper ends with an appendix on
the algorithmical aspects of the experiments, and a brief recall of the elementary
notions of statistics we use to assert their significance.

2 Shuflles

Let G = (V, E) be a directed graph, where V is a finite set of nodes, and E
is a finite set of directed edges over V. We write M for the incidence matrix
associated to G. Since G is directed, M may not be symmetric. In the absence
of parallel edges M has coefficients in {0, 1}, where parallel edges are allowed.

Given such a matrix M and a permutation ¢ over V', one writes Mo for the
matrix defined as for all u, v in V:

Mo (u,v) == M (o~ tu, 07 1v)

Note that Mo defines the same abstract graph as M does, since all o does is
changing the nodes names.
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2.1 Shuffles Induced by Properties on Edges

We consider first shuffles induced by properties on edges. Suppose given a par-
tition of E = 3 E;; this is equivalent to giving a map « : £ — {1,...,p} which
one can think of as colouring edges.

Define M; as the incidence matrix over V containing the edges in E; (of
colour ).

Define also V;, where I C {1,...,p}, as the subset of nodes v having for each
i € I at least one edge incident to v with colour 7, and no incident edge coloured
j for j ¢ I. We abuse notation and still write x(u) = I when u € V. This
represents the set of colours seen by the nodes.

Clearly V = 3" Vi, Vg is the set of isolated nodes of G, and the set of nodes
of G; is the union of the graphs generated by Vi, for ¢ € I.

Given o1, ..., 0, permutations over V, define the global shuffle of M as:

M(O’],...,O'p) = Zleal

The preceding definition of Mo is the particular case where p = 1 (one has only
one colour common to all edges). Each G; (the abstract graph associated to M;)
is preserved up to isomorphism under this transformation. However the way the
G;s are glued together is not, since one uses a different local shuffle on each.

For moral comfort, we can check that any means of glueing together the
G;s is obtainable using a general shuffle in the following sense: given G’ and
> qi : >, G; — G’ where the disjoint sum >, ¢ is an isomorphism on edges
one has that G is a general shuffle of G. To see this, define o;(u) := ¢;p;” Y(u) if
u € k~1(i), 04(u) = u else (we have written p; for the inclusion of G; in G), one
then has G’ = 5 Gio; = G(01,...,0p).

Note also that (M (o1, ...,0p))T := >, M;(70;), and so in particular, without
loss of generality one can take any the o;’s to be the identity (just take T = o~ ¥,
This is useful when doing actual computations, and avoids some redundancy in
generating samples.

An additional definition will help us refine the typology of shuffies. One says
a shuffle Mo is equatorial if in addition for all I, and all 4, V is closed under
;. Equivalently, one can ask that ko o; = k. An equatorial shuffle preserves the
set of colours associated with each node and in particular preserves for a given
pair of nodes (u,v) the fact that (u,v) is heterochromatic, i.e., k(u) N K(v) = @.
This in turn implies that the distance between u and v must be realised by a
path which uses edges of different colours. In the application such paths are
mixing different types of interaction, and are therefore of particular interest;
without preserving this attribute, an observable based on path with different
colours would not make sense. In the particular case of two colours, nodes at the
‘equator’, having both colours, will be globally preserved, hence the name.

2.2 Shuffles Induced by Properties on Vertices

One can also consider briefly shuffles induced by properties on nodes. Suppose
then given a partition of nodes V = ), V;, again that can be thought of as a
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colouring of nodes  : V' — {1,...,p}, and extended naturally to the assignment
of one or two colours to each edge.

A node shuffle is defined as a shuffle associated to ¢ which can be decomposed
as » ., 0i, 0; being a permutation over each cluster V;. Clearly each graph G;
generated by V; is invariant under the transformation: only the inter-cluster
connectivity is modified.

The equivalent of the equatorial constraint would be to require in addition
o(u) € 8V; if u € AV, where 9V; is defined as those nodes of V; with an edge to
some Vj, i # j. Other variants are possible and the choice of the specific variant
will likely depend on the particular case study. We now turn to the description
of the network the shuffle experiments will be applied to.

3 A Combined Network of Regulatory and
Protein-Protein Interactions in Yeast

With our definitions in place, we can now illustrate the approach on a heteroge-
neous network obtained by glueing two component networks.

It is known that regulatory influences, including those inferred from expression
data analysis or genetic experiments, are implemented by the cell through a
combination of direct regulatory interactions and protein-protein interactions,
which propagate signals and modulate the activity level of transcription factors.
The detailed principles underlying that implementation are not well understood,
but one guiding property is the fact that protein interaction and transcriptional
regulation events take place in the regulatory network at different time-scales.

In order to clarify the interplay between these two types of interactions, we
have combined protein-protein (PPI) and protein-DNA (TRI, for ‘transcriptional
regulation interaction’) interaction data coming from various sources into a het-
erogeneous network by glueing together these two networks on the underlying
set of yeast proteins.

The data from which the composite network was built includes: 1440 pro-
tein complexes identified from the literature, through HMS-PCI or TAP [3,5],
8531 physical interactions generated using high-throughput Y2H assays [26], and
7455 direct regulatory interactions compiled from literature and from ChIP-Chip
experiments [4,12], connecting a total of 6541 yeast proteins. A subnetwork of
high-reliability interactions was selected, using a threshold on the confidence lev-
els associated to each inferred interaction. For the ChIP-Chip data produced by
Lee et al. [12], interactions with a p-value inferior to 3.10~2 were conserved ; for
the Y2H data produced by Ito et al. [26], a threshold of 4.5 on the Interaction
Sequence Tag was used (see [8]). The PPI network was built by connecting two
proteins, in both directions, whenever there was a protein-protein or a complex
interaction between the two corresponding proteins. In the case of the TRI net-
work, an edge connects a regulator protein with its regulatee. To simplify the
discussion, we will refer in the rest of the paper to the TRI graph as TRI, and
to the PPI graph as PPI. With some more precision, define G as the real graph,
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TRI as the subgraph induced by the set of TRI nodes, i.e., nodes such that
TRI € k(u), and PPI as the subgraph induced by the set of PPI nodes.

Their respective sizes are:
TRI = 3387, PPI = 2517, TRI U PPI = 4489, TRIN PPI = 1415

The set of nodes TRI N PPI of both colours is also referred to in the sequel as
the equator or the interface. Since the object of the following is to discuss the
interplay between the TRI and PPI subgraphs, the interface naturally plays
an important role. A qualitative measure of the connectivity between T'RI and
PPI which will be useful later in the discussion, is the number of bi-connected
pairs in G (these are the pairs which are connected in G, but not connected in
either TRI or PPI), which is roughly py; = 23%. To complete this statistical
portrait of the data, we provide in figure 1 the histograms of degree distributions
in the PPI and TRI networks, with in and out degrees pictured separately for
the latter. Figure 1 also shows the hub size distribution for the TRI network (the
PPI network has no non-trivial hubs). Note that hubs are defined as sets of nodes
connected to a single node. The TRI network (here considered as unoriented) has
124 such hubs ; the histogram of the distribution of their sizes is given in figure 1.
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Fig. 1. First row: Histograms of the in and out degree distributions of the TRI net-
work. Second row: Histogram of the degree distribution of the PPI network and of the
distribution of the hub size in the TRI network.
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4 Results and Interpretations

Hereafter, notions of connectivity, distance, etc. should be understood as directed
unless explicitly stated otherwise. We now turn to the various shuffle experiments
and consecutive observations.

4.1 General Shuffie vs Connectivity

We take here as a rough measure of the connectivity of a graph the percentage of
unconnected pairs. Comparing first the real graph with the randomised versions
under the general shuffle, one finds that in the average 4% of the population
pairs are disconnected under shuffle. So general shuffle disconnects, or in other
words G maximises bi-connectivity.

Clearly mono-connected pairs (pairs connected in either PPI or T RI) cannot
be disconnected under general shuffle; a pair is ‘breakable’ only if bi-connected in
G therefore a more accurate measure of the connectivity loss under general shuf-
fle is that about 17.5% of the breakable pairs are actually broken (this obtained
by dividing by ps;), a rather strong deviation with a p-value below 107!,

Inasmuch as a directed path can be thought of as a signal-carrying pathway,
one can interpret the above as saying that the real graph connects PPI and
TRI so as to maximise the bandwidth between the subgraphs.

4.2 Equatorial Shuffle vs Connectivity

Keeping with the same observable, we now restrict to equatorial shuffles. One sees
in this case that no disconnection happens, and actually about 1% more pairs
are connected after shuffling. The default of connected pairs of the real graph
has a far less significant p-value of 3%. However the point is that equatorial
shuffles leaves bi-connectivity rather the same.

This complements the first observation and essentially says that the connectiv-
ity maximisation seen above is a property of the set of equatorial nodes ({ TRI,PPI}
nodes) itself, and not of the precise way TRI and PPI edges meet at the equator.

Both observations can be understood as saying that the restriction of G to
the equator is a much denser subgraph than its complement (as evidenced by
the connectivity loss under general shuffle), and dense enough so that equatorial
shuffling does not impact connectivity.

Note that so far the observable is somewhat qualitative, being only about
whether a pair is connected or not. Using a refined and quantitative version
of connectivity, namely the distribution of distances (meaning for each n the
proportion of pairs at distance n), will reveal more.

4.3 Impact of Equatorial Shuffles on Distance Distribution

Using this refined observable, one sees that the whole histogram shifts to the
left, so equatorial shuffle contracts the graph (Fig. 2). This is confirmed by the
equality between the number of lost pairs at distance 7 to 9 and the number of
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Fig. 2. Equatorial shuffle distance histogram: grey boxes stand for the real graph; one
sees that shuffles have more pairs at shorter distance, and consequently (because the
number of connected pairs is about the same) less such at higher distances

new ones at distance 3 to 5. In accordance with the preceding experiment, one
also does not see any disconnection under equatorial shuffle.

This is to be compared with the general shuffle version (Fig. 3) where both
effects are mixed, and the cumulated excess of short pairs does not account for
the loss of long pairs (indeed we know 4% are broken, i.e., disappear at infinity
and are not shown on the histogram).

To summarize the distance distribution results in a single number, one can
compute the deviation of the real graph mean distance under both shuffles. As
expected the mean distance is higher in the real graph with respective p-values
of 0.2% and 2% in the general and equatorial shuffles (see Appendix for details).
We conclude that while the real graph does maximise bi-connectivity, it does
not try to minimise the associated distances.

To provide an intuition on the potential interpretation of the above result, let
us again consider paths as rough approximations of signalling pathways. Now
compare a completely linear chain-shaped graph and star-shaped one, with the
same number of nodes and edges. In the star case, any two nodes are close, at
constant distance 2, while in the chain distances are longer. As said, compact-
ness comes with a price, namely that in a star graph all signals go through the
hub and are anonymised, i.e., there may be a signal, but there is no informa-
tion whatsoever in the signal about where the signal originated from. Quite the
opposite happens in a linear graph. Of course this is an idealized version of the
real situation; nevertheless it is tempting to interpret this last observation as an
indication that the real graph is trading off fast connectivity against specificity
of signals. The heterogeneous network is likely to result from a trade-off between
causality and signal integration.



