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Harmonic Measure

During the last two decades several remarkable new results were discovered about
harmonic measure in the complex plane. This book provides a survey of these results
and an introduction to the branch of analysis that contains them. Many of these results,
due to Bishop, Carleson, Jones, Makarov, Wolff, and others, appear here in book form
for the first time.

The book is accessible to students who have completed standard graduate courses in
real and complex analysis. The first four chapters provide the needed background
material on univalent functions, potential theory, and extremal length, and each chapter
has many exercises to further inform and teach the reader.
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Preface

Several surprising new results about harmonic measure on plane domains have
been proved during the last two decades. The most famous of these results are
Makarov’s theorems that harmonic measure on any simply connected domain
is singular to Hausdorff measure A, for all @ > 1 but absolutely continuous
to A, for all @ < 1. Also surprising was the extension by Jones and Wolff of
Makarov’s « > 1 theorem to all plane domains. Further important new results
include the work of Carleson, Jones and Wolff, and others on harmonic measure
for complements of Cantor sets; the work by Carleson and Makarov, Bertilsson,
Pommerenke, and others on Brennan’s tantalizing conjecture that for univalent
functions [f ¢/ |2 Pdxdy < oo if % < p < 4; several new geometric condi-
tions that guarantee the existence of angular derivatives; and the Jones square
sum characterization of subsets of rectifiable curves and its applications by
Bishop and Jones to a variety of problems in function theory.

We wrote this book to explain these exciting new results and to provide
beginning students with an introduction to this part of mathematics. We have
tried to make the subject accessible to students who have completed graduate
courses in real analysis from Folland [1984] or Wheeden and Zygmund [1977],
for example, and in complex analysis from Ahlfors [1979] or Gamelin [2001],
for example.

The first four chapters, along with the appendices on Hardy spaces, Hausdorft
measures and martingales, provide a foundation that every student of function
theory will need. In Chapter I we solve the Dirichlet problem on the half-plane
and the disc and then on any simply connected Jordan domain by using the
Carathéodory theorem on boundary continuity. Chapter I also includes brief
introductions to hyperbolic geometry and univalent function theory. In Chap-
ter II we solve the Dirichlet problem on domains bounded by finitely many
Jordan curves and study the connection between the smoothness of a domain’s
boundary and the smoothness of its Poisson kernel. Here the main tools are

Xiii



Xiv Preface

two classical theorems about conjugate functions. Chapter II and the discus-
sion in Chapter III of Wiener’s solution of the Dirichlet problem on arbitrary
domains follow the 1985 UCLA lecture course by Carleson. The introduction
to extremal length in Chapter IV is based on the Institut Mittag—Leffler lec-
tures of Beurling [1989]. Chapter V contains some applications of extremal
length, such as Teichmiiller’s Modulsatz and some newer theorems about an-
gular derivatives, that are not found in other books. Chapter VI is a blend of
the classical theorems of F. and M. Riesz, Privalov, and Plessner and the more
recent theorems of McMillan, Makarov, and Pommerenke on the comparison
of harmonic measure and one dimensional Hausdorff measure for simply con-
nected domains. Chapter VII surveys the beautiful circle of ideas around Bloch
functions, univalent functions, quasicircles, and AP weights. Chapter VIII is
an exposition of Makarov’s deeper results on the relations between harmonic
measure in simply connected domains and Hausdorff measures and the work of
Carleson and Makarov concerning Brennan’s conjecture. Chapter IX discusses
harmonic measure on infinitely connected plane domains. Chapter X begins by
introducing the Lusin area function, the Schwarzian derivative, and the Jones
square sums, and then applies these ideas to several problems about univalent
functions and harmonic measures. The thirteen appendices at the end of the text
provide further related material.

For space reasons we have not treated some important related topics. These
include the connections between Chapters VIII and IX and thermodynamical
formalism and several other connections between complex dynamics and har-
monic measure. We have emphasized Wiener’s solution of the Dirichlet prob-
lem instead of the Perron method. The beautiful Perron method can be found
in Ahlfors [1973] and Tsuji [1959]. We also taken a few detours around the
theory of prime ends. There are excellent discussions of prime ends in Ahlfors
[1973], Pommerenke [1975], and Tsuji [1959]. Finally, the theory of harmonic
measure in higher dimensions has a different character, and we have omitted it
entirely.

At the end of each chapter there is a brief section of biographical notes
and a section called “Exercises and Further Results". An exercise consisting
of a stated result without a reference is meant to be homework for the reader.
“Further results" are outlines, with detailed references, of theorems not in the
text.

Results are numbered lexicographically within each chapter, so that Theo-
rem 2.4 is the fourth item in Section 2 of the same chapter, while Theorem I11.2.4
is from Section 2 of Chapter III. The same convention is used for formulas, so
that (3.2) is in the same chapter, while (IV.6.4) refers to (6.4) from Chapter IV.

Many of the results that inspired us to write this book are also covered in
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Pommerenke’s excellent book [1991]. However, our emphasis differs from the
one in Pommerenke [1991] and we hope the two books will complement each
other.

Some unpublished lecture notes from a 1986 Nachdiplom Lecture course
at Eidgenssische Technische Hochschule Zurich by the first listed author and
the out-of-print monograph Garnett [1986] were preliminary versions of the
present book.

The web page

http://www.math.washington.edu/ ~marshall/HMcorrections.html
will list corrections to the book. Though we have tried to avoid errors, the
observant reader will no doubt find some. We would appreciate receiving email
at marshall @ math.washington.edu about any errors you come across.

Many colleagues, friends, and students have helped with their comments and
suggestions. Among these, we particularly thank A. Baernstein, M. Benedicks,
D. Bertilsson, C. J. Bishop, K. Burdzy, L. Carleson, S. Choi, R. Chow, M.
Essen, R. Gundy, P. Haissinski, J. Handy, P. Jones, P. Koosis, N. Makarov, P.
Mateos, M. O’Neill, K. #yma, R. Pérez-Marco, P. Poggi-Corridini, S. Rohde,
1. Uriarte-Tuero, J. Verdera, S. Yang and S. Yoshinobu.

We gratefully acknowledge support during the writing of this book by the
Royalty Research Fund of the University of Washington, the University of
Washington—University of Bergen Faculty Exchange Program, the Institut des
Hautes Etudes Scientifiques, the Centre de Recerca Matematica, Barcelona, and
the National Science Foundation.

Los Angeles and Seattle John B. Garnett
Seattle and Bergen Donald E. Marshall
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Jordan Domains

To begin we construct harmonic measure and solve the Dirichlet problem in
the upper half-plane and the unit disc. We next prove the Fatou theorem on
nontangential limits. Then we construct harmonic measure on domains bounded
by Jordan curves, via the Riemann mapping theorem and the Carathéodory
theorem on boundary correspondence. We review two topics from classical
complex analysis, the hyperbolic metric and the elementary distortion theory for
univalent functions. We conclude the chapter with the theorem of Hayman and
Wau on lengths of level sets. Its proof is an elementary application of harmonic
measure and the hyperbolic metric.

1. The Half-Plane and the Disc

Write H = {z : Imz > 0} for the upper half-plane and R for the real line. Sup-
pose a < b are real. Then the function

—-b z—>b
0 =0(z) =arg (Z—> :Im]og( )
z—a Z—a

is harmonic on H, and ® = 7 on (a, b) and 8 = 0on R\ [a, b].

a b
Figure I.1 The harmonic function 6(z).



2 1. Jordan Domains

Viewed geometrically, §(z) = Regp(z) where ¢(z) is any conformal mapping
from H to the strip {0 < Rez < 7} which maps (a, b) onto {Rez = '} and
R\ [a, b] into {Rez = 0}. Let E C R be a finite union of open intervals and
write £ = U;l:l(aj, bj) with bj_l <aj < bj. Set

2— by
0; =0, = ar
' j(Z) g(Z—aj)

and define the harmonic measure of E at z € H to be

n
b
w(z, E,H) = Z;. (1.1)
Jj=1
Then

(1) 0 <w(z, E,H) <1 for z € H,
(ii) w(z, E,H) —> 1 as z — E, and
(iii) w(z, E,H) - 0 as z > R\ E.

The function w(z, E, H) is the unique harmonic function on H that satisfies (i),
(i), and (iii). The uniqueness of w(z, E, H) is a consequence of the following
lemma, known as Lindelof’s maximum principle.

Lemma 1.1 (Lindelof). Suppose the function u(z) is harmonic and bounded
above on a region S such that Q # C. Let F be a finite subset of 9Q and
suppose

limsup u(z) <0 (1.2)

=
forallt € 9Q\ F. Then u(z) < 0on Q.
Proof. Fix zp ¢ Q. Then the map 1/(z — zo) transforms € into a bounded
region, and thus we may assume €2 is bounded. If (1.2) holds for all ¢ € €2,

then the lemma is the ordinary maximum principle. Write F = {1, ..., ¢{n}s
let ¢ > 0, and set

N .
us(z) =u(z) — ¢ Zlog(M).
i lz = gl

Then u, is harmonic on §2 and lim sup,_, ¢ ugs(z) < 0forall ¢ € Q2. Therefore
u, < 0 forall ¢, and

N .
. diam(£2)
u(z) < lime lo (——>= 0. [ ]
=0 ; & |z — &l



1. The Half-Plane and the Disc

Lindelsf [1915] proved Lemma 1.1 under the weaker hypothesis that 92 is
infinite. See also Ahlfors [1973]. Exercise 3 and Exercise I1.3 tell more about

Lindel6f’s maximum principle.

Given a domain 2 and a function f € C(9S2), the Dirichlet problem for
f on L is to find a function u € C(€2) such that Au =0 on Q and u|yq = f.

Theorem 1.2 treats the Dirichlet problem on the upper half-plane H .

Theorem 1.2. Suppose f € C(R U {oco}). Then there exists a unique function

u=us € C(HU {oo}) such that u is harmonic on H and u|yy = f.

Proof. We can assume f is real valued and f (0co) = 0. For ¢ > 0, take disjoint
open intervals I; = (¢;, tj+1) and real constants cj, j = 1, ..., n, so that the

step function

n

fet) =) ¢jXy,

j=1

satisfies

”fb‘ - f"LOO(IR) < &.

Set

n

ug(z) = cha)(z, I, H).

j=1
Ifr e R\ |Jal;, then
Hlaizn—l>r ug(z) = fe(t)

by (ii) and (iii). Therefore by (1.3) and Lemma 1.1,

sup'usl (2) — ug, (z)| < &1+ e.

H
Consequently the limit
u(z) = lim u.(z)
e—>0

exists, and the limit u(z) is harmonic on H and satisfies

sup |u(z) — ue(z)| < 2e.
H

We claim that

limsup |u.(z) — f(t)| < ¢

z—>t

(1.3)

(1.4)



4 1. Jordan Domains

for all ¢ € R. It is clear that (1.4) holds when ¢ ¢ | J 91;. To verify (1.4) at the
endpoint ;4| € d1; N d1; 1, notice that by (i1), (iii), and Lemma 1.1,

cj +cj+l
sup|cjw(z, Ij, H) + cj10(z, Ii+1, H) — (%) w(z, [; U Ij1, H)
H
Cj — Cj+l
=l

while
lim G tei+t w(z, 1j ULt H) = GG+
=14 2 2

Hence all limit values of u,(z) at t;1 lie in the closed interval with endpoints
¢j and ¢j41, and then (1.3) yields (1.4) for the endpoint #; .

Now lett € R. By (1.4)

lim sup |u(z) — f(t)| < sup |u(z) — ue(z)| + limsup |ue(z) — f ()| < 3e.

>t zeH ft

The same estimate holds if # = co. Therefore u extends to be continuous on H

and u|yp = f. The uniqueness of u follows immediately from the maximum
principle. |

For a < b, elementary calculus gives

w(x +iy. (@, b), H) = %(m*‘(%) — st ;b))

_/b y dt
CJo =02+ yra]

If E C R is measurable, we define the harmonic measure of E at z € H to be
w(z,E,H):/ oy 4 (1.5)
E@—x2+y’xm
When E is a finite union of open intervals this definition (1.5) is the same as
definition (1.1). For z = x 4+ iy € H, the density

P. (t) — l ____J__._._
- T (x—1)24y2

is called the Poisson kernel for H. If f € C(R U {oo}), the proof of Theo-
rem 1.2 shows that

ur(z) = fR.f(t)Pz(r)dt,

and for this reason uy is also called the Poisson integral of f.



