new mathematical monographs: 2

Harmonic Measure

John B. Garnett and Donald E. Marshall

0174.5 G235

Harmonic Measure

JOHN B. GARNETT

University of California, Los Angeles

DONALD E. MARSHALL

University of Washington

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sào Paulo

Cambridge University Press 40 West 20th Street, New York, NY 10011–4211, USA

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521470186

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United States of America

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data Garnett, John B.

Harmonic measure / John B. Garnett, Donald E. Marshall.

p. cm. – (New math monographs)

Includes bibliographical references and indexes.

- 1. Functions of complex variables. 2. Potential theory (Mathematics).
- I. Marshall, Donald E. (Donald Eddy), 1947— II. Title. III. New mathematical monographs.

QA331.7.G37 2005 515/.42 22 2004045893

ISBN-13 978 0 521 47018 6 hardback ISBN-10 0 521 47018 8 hardback

Harmonic Measure

During the last two decades several remarkable new results were discovered about harmonic measure in the complex plane. This book provides a survey of these results and an introduction to the branch of analysis that contains them. Many of these results, due to Bishop, Carleson, Jones, Makarov, Wolff, and others, appear here in book form for the first time.

The book is accessible to students who have completed standard graduate courses in real and complex analysis. The first four chapters provide the needed background material on univalent functions, potential theory, and extremal length, and each chapter has many exercises to further inform and teach the reader.

 ${\tt JOHN~B.~GARNETT}$ is Professor of Mathematics at the University of California, Los Angeles.

 ${\tt DONALD}\ {\tt E.}\ {\tt MARSHALL}$ is Professor of Mathematics at the University of Washington.

NEW MATH MONOGRAPHS

Editorial Board

Béla Bollobás William Fulton Frances Kirwan Peter Sarnak Barry Simon

For information about Cambridge University Press mathematics publications visit http://publishing.cambridge.org/stm/mathematics

Preface

Several surprising new results about harmonic measure on plane domains have been proved during the last two decades. The most famous of these results are Makarov's theorems that harmonic measure on any simply connected domain is singular to Hausdorff measure Λ_{α} for all $\alpha>1$ but absolutely continuous to Λ_{α} for all $\alpha<1$. Also surprising was the extension by Jones and Wolff of Makarov's $\alpha>1$ theorem to all plane domains. Further important new results include the work of Carleson, Jones and Wolff, and others on harmonic measure for complements of Cantor sets; the work by Carleson and Makarov, Bertilsson, Pommerenke, and others on Brennan's tantalizing conjecture that for univalent functions $\iint |\varphi'|^{2-p} dx dy < \infty$ if $\frac{4}{3} ; several new geometric conditions that guarantee the existence of angular derivatives; and the Jones square sum characterization of subsets of rectifiable curves and its applications by Bishop and Jones to a variety of problems in function theory.$

We wrote this book to explain these exciting new results and to provide beginning students with an introduction to this part of mathematics. We have tried to make the subject accessible to students who have completed graduate courses in real analysis from Folland [1984] or Wheeden and Zygmund [1977], for example, and in complex analysis from Ahlfors [1979] or Gamelin [2001], for example.

The first four chapters, along with the appendices on Hardy spaces, Hausdorff measures and martingales, provide a foundation that every student of function theory will need. In Chapter I we solve the Dirichlet problem on the half-plane and the disc and then on any simply connected Jordan domain by using the Carathéodory theorem on boundary continuity. Chapter I also includes brief introductions to hyperbolic geometry and univalent function theory. In Chapter II we solve the Dirichlet problem on domains bounded by finitely many Jordan curves and study the connection between the smoothness of a domain's boundary and the smoothness of its Poisson kernel. Here the main tools are

xiv Preface

two classical theorems about conjugate functions. Chapter II and the discussion in Chapter III of Wiener's solution of the Dirichlet problem on arbitrary domains follow the 1985 UCLA lecture course by Carleson. The introduction to extremal length in Chapter IV is based on the Institut Mittag-Leffler lectures of Beurling [1989]. Chapter V contains some applications of extremal length, such as Teichmüller's Modulsatz and some newer theorems about angular derivatives, that are not found in other books. Chapter VI is a blend of the classical theorems of F. and M. Riesz, Privalov, and Plessner and the more recent theorems of McMillan, Makarov, and Pommerenke on the comparison of harmonic measure and one dimensional Hausdorff measure for simply connected domains. Chapter VII surveys the beautiful circle of ideas around Bloch functions, univalent functions, quasicircles, and A^p weights. Chapter VIII is an exposition of Makarov's deeper results on the relations between harmonic measure in simply connected domains and Hausdorff measures and the work of Carleson and Makarov concerning Brennan's conjecture. Chapter IX discusses harmonic measure on infinitely connected plane domains. Chapter X begins by introducing the Lusin area function, the Schwarzian derivative, and the Jones square sums, and then applies these ideas to several problems about univalent functions and harmonic measures. The thirteen appendices at the end of the text provide further related material.

For space reasons we have not treated some important related topics. These include the connections between Chapters VIII and IX and thermodynamical formalism and several other connections between complex dynamics and harmonic measure. We have emphasized Wiener's solution of the Dirichlet problem instead of the Perron method. The beautiful Perron method can be found in Ahlfors [1973] and Tsuji [1959]. We also taken a few detours around the theory of prime ends. There are excellent discussions of prime ends in Ahlfors [1973], Pommerenke [1975], and Tsuji [1959]. Finally, the theory of harmonic measure in higher dimensions has a different character, and we have omitted it entirely.

At the end of each chapter there is a brief section of biographical notes and a section called "Exercises and Further Results". An exercise consisting of a stated result without a reference is meant to be homework for the reader. "Further results" are outlines, with detailed references, of theorems not in the text.

Results are numbered lexicographically within each chapter, so that Theorem 2.4 is the fourth item in Section 2 of the same chapter, while Theorem III.2.4 is from Section 2 of Chapter III. The same convention is used for formulas, so that (3.2) is in the same chapter, while (IV.6.4) refers to (6.4) from Chapter IV.

Many of the results that inspired us to write this book are also covered in

Preface xv

Pommerenke's excellent book [1991]. However, our emphasis differs from the one in Pommerenke [1991] and we hope the two books will complement each other.

Some unpublished lecture notes from a 1986 Nachdiplom Lecture course at Eidgenssische Technische Hochschule Zurich by the first listed author and the out-of-print monograph Garnett [1986] were preliminary versions of the present book.

The web page

http://www.math.washington.edu/~marshall/HMcorrections.html will list corrections to the book. Though we have tried to avoid errors, the observant reader will no doubt find some. We would appreciate receiving email at marshall@math.washington.edu about any errors you come across.

Many colleagues, friends, and students have helped with their comments and suggestions. Among these, we particularly thank A. Baernstein, M. Benedicks, D. Bertilsson, C. J. Bishop, K. Burdzy, L. Carleson, S. Choi, R. Chow, M. Essèn, R. Gundy, P. Haissinski, J. Handy, P. Jones, P. Koosis, N. Makarov, P. Mateos, M. O'Neill, K. Øyma, R. Pérez-Marco, P. Poggi-Corridini, S. Rohde, I. Uriarte-Tuero, J. Verdera, S. Yang and S. Yoshinobu.

We gratefully acknowledge support during the writing of this book by the Royalty Research Fund of the University of Washington, the University of Washington—University of Bergen Faculty Exchange Program, the Institut des Hautes Etudes Scientifiques, the Centre de Recerca Matemàtica, Barcelona, and the National Science Foundation.

Los Angeles and Seattle Seattle and Bergen John B. Garnett Donald E. Marshall

Contents

107	Polar Sets and Sets of Harmonic Measure Zero	.8
<i>L</i> 6	Wiener Series	٠.
66	Regular Points	.9
68	Wiener's Solution to the Dirichlet Problem	۶.
78	The Equilibrium Distribution	.4.
6 <i>L</i>	The Energy Integral	.ε
LL	The Logarithmic Potential	7.
<i></i> ₹ <i>L</i>	Capacity and Green's Functions	.I
£L	Potential Theory	.III
99	Exercises and Further Results	
99	Notes	
65	Boundary Smoothness	· <i>t</i>
90	Conjugate Functions	.ε
Ιt	Green's Functions and Poisson Kernels	.2
LE	The Schwarz Alternating Method	\cdot I
LE	Finitely Connected Domains	.II
97	Exercises and Further Results	
57	Notes	
73	Тһе Наутап–Wu Тһеогет	.ς
91	Distortion and the Hyperbolic Metric	· <i>t</i>
13	Carathéodory's Theorem	\mathfrak{S}
9	Fatou's Theorem and Maximal Functions	7.
Ţ.	The Half-Plane and the Disc	.I
I	snismo U nebrol	.I
iiix ə8vd	Preface	

x Contents

9.	Estimates for Harmonic Measure	104
	Notes	112
	Exercises and Further Results	112
IV.	Extremal Distance	129
1.	Definitions and Examples	129
	Uniqueness of Extremal Metrics	133
3.	Four Rules for Extremal Length	134
4.	Extremal Metrics for Extremal Distance	139
5.	Extremal Distance and Harmonic Measure	143
6.	The $\int \frac{dx}{\theta(x)}$ Estimate	146
	Notes	149
	Exercises and Further Results	150
V.	Applications and Reverse Inequalities	157
1.	Asymptotic Values of Entire Functions	157
2.	Lower Bounds	159
3.	Reduced Extremal Distance	162
4.	Teichmüller's Modulsatz	166
5.	Boundary Conformality and Angular Derivatives	173
6.	Conditions More Geometric	184
	Notes	193
	Exercises and Further Results	194
VI.	Simply Connected Domains, Part One	200
1.	The F. and M. Riesz Theorem	200
2.	Privalov's Theorem and Plessner's Theorem	203
3.	Accessible Points	205
4.	Cone Points and McMillan's Theorem	207
5.	Compression and Expansion	212
6.	Pommerenke's Extension	216
	Notes	221
	Exercises and Further Results	221
VII.	Bloch Functions and Quasicircles	229
	Bloch Functions	229
2.	Bloch Functions and Univalent Functions	232
3.	Quasicircles	241
4.	Chord-Arc Curves and the A^{∞} Condition	246
5.	BMO Domains	253
	Notes	257
	Exercises and Further Results	258

Contents xi

III.	Simply Connected Domains, Part Two	269
	The Law of the Iterated Logarithm for Bloch Functions	269
2.	Harmonic Measure and Hausdorff Measure	272
3.	The Number of Bad Discs	281
4.	Brennan's Conjecture and Integral Means Spectra	286
	β Numbers and Polygonal Trees	289
6.	The Dandelion Construction and $(c) \Longrightarrow (a)$	296
7.	Baernstein's Example on the Hayman-Wu Theorem	302
	Notes	305
	Exercises and Further Results	307
IX.	Infinitely Connected Domains	315
1.	Cantor Sets	315
2.	For Certain Ω , dim $\omega < 1$.	324
3.	For All Ω , dim $\omega \leq 1$.	331
	Notes	341
	Exercises and Further Results	342
X.	Rectifiability and Quadratic Expressions	347
1.	The Lusin Area Function	348
2.	Square Sums and Rectifiability	361
3.	A Decomposition Theorem	372
4.	Schwarzian Derivatives	380
5.	Geometric Estimates of Schwarzian Derivatives	384
	Schwarzian Derivatives and Rectifiable Quasicircles	393
7.	The Bishop–Jones $H^{\frac{1}{2}-\eta}$ Theorem	397
8.	Schwarzian Derivatives and BMO Domains	408
9.	Angular Derivatives	411
10.	A Local F. and M. Riesz Theorem	415
11.	Ahlfors Regular Sets and the Hayman-Wu Theorem	420
	Notes	425
	Exercises and Further Results	426
	Appendices	435
A.	Hardy Spaces	435
B.	Mixed Boundary Value Problems	441
C.	The Dirichlet Principle	447
D.	Hausdorff Measure	456
E.	Transfinite Diameter and Evans Functions	466
F.	Martingales, Brownian Motion, and Kakutani's Theorem	470
G	Carleman's Method	480

xii Contents

H.	Extremal Distance in Finitely Connected Domains	
I.	McMillan's Twist Point Theorem	497
J.	Bloch Martingales and the Law of the Iterated Logarithm	503
K.	A Dichotomy Theorem	512
L.	Two Estimates on Integral Means	518
M.	Calderón's Theorem and Chord-Arc Domains	520
	Bibliography	531
	Author Index	555
	Symbol Index	559
	Subject Index	561

I

Jordan Domains

To begin we construct harmonic measure and solve the Dirichlet problem in the upper half-plane and the unit disc. We next prove the Fatou theorem on nontangential limits. Then we construct harmonic measure on domains bounded by Jordan curves, via the Riemann mapping theorem and the Carathéodory theorem on boundary correspondence. We review two topics from classical complex analysis, the hyperbolic metric and the elementary distortion theory for univalent functions. We conclude the chapter with the theorem of Hayman and Wu on lengths of level sets. Its proof is an elementary application of harmonic measure and the hyperbolic metric.

1. The Half-Plane and the Disc

Write $\mathbb{H} = \{z : \text{Im} z > 0\}$ for the upper half-plane and \mathbb{R} for the real line. Suppose a < b are real. Then the function

$$\theta = \theta(z) = \arg\left(\frac{z-b}{z-a}\right) = \operatorname{Im}\log\left(\frac{z-b}{z-a}\right)$$

is harmonic on \mathbb{H} , and $\theta = \pi$ on (a, b) and $\theta = 0$ on $\mathbb{R} \setminus [a, b]$.

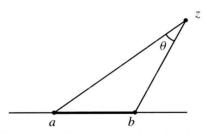


Figure I.1 The harmonic function $\theta(z)$.

Viewed geometrically, $\theta(z) = \operatorname{Re}\varphi(z)$ where $\varphi(z)$ is any conformal mapping from \mathbb{H} to the strip $\{0 < \operatorname{Re}z < \pi\}$ which maps (a,b) onto $\{\operatorname{Re}z = \pi\}$ and $\mathbb{R} \setminus [a,b]$ into $\{\operatorname{Re}z = 0\}$. Let $E \subset \mathbb{R}$ be a finite union of open intervals and write $E = \bigcup_{j=1}^{n} (a_j,b_j)$ with $b_{j-1} < a_j < b_j$. Set

$$\theta_j = \theta_j(z) = \arg\left(\frac{z - b_j}{z - a_i}\right)$$

and define the **harmonic measure** of E at $z \in \mathbb{H}$ to be

$$\omega(z, E, \mathbb{H}) = \sum_{j=1}^{n} \frac{\theta_j}{\pi}.$$
 (1.1)

Then

- (i) $0 < \omega(z, E, \mathbb{H}) < 1$ for $z \in \mathbb{H}$,
- (ii) $\omega(z, E, \mathbb{H}) \to 1$ as $z \to E$, and
- (iii) $\omega(z, E, \mathbb{H}) \to 0$ as $z \to \mathbb{R} \setminus \overline{E}$.

The function $\omega(z, E, \mathbb{H})$ is the unique harmonic function on \mathbb{H} that satisfies (i), (ii), and (iii). The uniqueness of $\omega(z, E, \mathbb{H})$ is a consequence of the following lemma, known as **Lindelöf's maximum principle**.

Lemma 1.1 (**Lindelöf**). Suppose the function u(z) is harmonic and bounded above on a region Ω such that $\overline{\Omega} \neq \mathbb{C}$. Let F be a finite subset of $\partial \Omega$ and suppose

$$\limsup_{z \to \zeta} u(z) \le 0$$
(1.2)

for all $\zeta \in \partial \Omega \setminus F$. Then $u(z) \leq 0$ on Ω .

Proof. Fix $z_0 \notin \overline{\Omega}$. Then the map $1/(z-z_0)$ transforms Ω into a bounded region, and thus we may assume Ω is bounded. If (1.2) holds for all $\zeta \in \partial \Omega$, then the lemma is the ordinary maximum principle. Write $F = \{\zeta_1, \ldots, \zeta_N\}$, let $\varepsilon > 0$, and set

$$u_{\varepsilon}(z) = u(z) - \varepsilon \sum_{j=1}^{N} \log \left(\frac{\operatorname{diam}(\Omega)}{|z - \zeta_j|} \right).$$

Then u_{ε} is harmonic on Ω and $\limsup_{z\to \zeta} u_{\varepsilon}(z) \leq 0$ for all $\zeta\in\partial\Omega$. Therefore $u_{\varepsilon}\leq 0$ for all ε , and

$$u(z) \le \lim_{\varepsilon \to 0} \varepsilon \sum_{j=1}^{N} \log \left(\frac{\operatorname{diam}(\Omega)}{|z - \zeta_j|} \right) = 0.$$

Lindelöf [1915] proved Lemma 1.1 under the weaker hypothesis that $\partial\Omega$ is infinite. See also Ahlfors [1973]. Exercise 3 and Exercise II.3 tell more about Lindelöf's maximum principle.

Given a domain Ω and a function $f \in C(\partial \Omega)$, the **Dirichlet problem** for f on Ω is to find a function $u \in C(\overline{\Omega})$ such that $\Delta u = 0$ on Ω and $u|_{\partial\Omega} = f$. Theorem 1.2 treats the Dirichlet problem on the upper half-plane \mathbb{H} .

Theorem 1.2. Suppose $f \in C(\mathbb{R} \cup \{\infty\})$. Then there exists a unique function $u = u_f \in C(\overline{\mathbb{H} \cup \{\infty\}})$ such that u is harmonic on \mathbb{H} and $u|_{\partial \mathbb{H}} = f$.

Proof. We can assume f is real valued and $f(\infty) = 0$. For $\varepsilon > 0$, take disjoint open intervals $I_j = (t_j, t_{j+1})$ and real constants c_j , $j = 1, \ldots, n$, so that the step function

$$f_{\varepsilon}(t) = \sum_{j=1}^{n} c_j \chi_{I_j}$$

satisfies

$$||f_{\varepsilon} - f||_{L^{\infty}(\mathbb{R})} < \varepsilon.$$
 (1.3)

Set

$$u_{\varepsilon}(z) = \sum_{j=1}^{n} c_{j}\omega(z, I_{j}, \mathbb{H}).$$

If $t \in \mathbb{R} \setminus \bigcup \partial I_i$, then

$$\lim_{\mathbb{H}\ni z\to t}u_{\varepsilon}(z)=f_{\varepsilon}(t)$$

by (ii) and (iii). Therefore by (1.3) and Lemma 1.1,

$$\sup_{\mathbb{H}} \left| u_{\varepsilon_1}(z) - u_{\varepsilon_2}(z) \right| < \varepsilon_1 + \varepsilon_2.$$

Consequently the limit

$$u(z) \equiv \lim_{\varepsilon \to 0} u_{\varepsilon}(z)$$

exists, and the limit u(z) is harmonic on \mathbb{H} and satisfies

$$\sup_{\mathbb{H}} |u(z) - u_{\varepsilon}(z)| \le 2\varepsilon.$$

We claim that

$$\limsup_{z \to t} |u_{\varepsilon}(z) - f(t)| \le \varepsilon \tag{1.4}$$

for all $t \in \mathbb{R}$. It is clear that (1.4) holds when $t \notin \bigcup \partial I_j$. To verify (1.4) at the endpoint $t_{i+1} \in \partial I_i \cap \partial I_{i+1}$, notice that by (ii), (iii), and Lemma 1.1,

$$\begin{split} \sup_{\mathbb{H}} \left| c_j \omega(z, I_j, \mathbb{H}) + c_{j+1} \omega(z, I_{j+1}, \mathbb{H}) - \left(\frac{c_j + c_{j+1}}{2} \right) \omega(z, I_j \cup I_{j+1}, \mathbb{H}) \right| \\ & \leq \left| \frac{c_j - c_{j+1}}{2} \right|, \end{split}$$

while

$$\lim_{z \to t_{j+1}} \left(\frac{c_j + c_{j+1}}{2} \right) \omega(z, I_j \cup I_{j+1}, \mathbb{H}) = \frac{c_j + c_{j+1}}{2}.$$

Hence all limit values of $u_{\varepsilon}(z)$ at t_{j+1} lie in the closed interval with endpoints c_i and c_{j+1} , and then (1.3) yields (1.4) for the endpoint t_{j+1} .

Now let $t \in \mathbb{R}$. By (1.4)

$$\limsup_{z \to t} |u(z) - f(t)| \le \sup_{z \in \mathbb{H}} |u(z) - u_{\varepsilon}(z)| + \limsup_{z \to t} |u_{\varepsilon}(z) - f(t)| \le 3\varepsilon.$$

The same estimate holds if $t = \infty$. Therefore u extends to be continuous on $\overline{\mathbb{H}}$ and $u|_{\partial \mathbb{H}} = f$. The uniqueness of u follows immediately from the maximum principle.

For a < b, elementary calculus gives

$$\omega(x+iy,(a,b),\mathbb{H}) = \frac{1}{\pi} \left(\tan^{-1} \left(\frac{x-a}{y} \right) - \tan^{-1} \left(\frac{x-b}{y} \right) \right)$$
$$= \int_a^b \frac{y}{(t-x)^2 + y^2} \frac{dt}{\pi}.$$

If $E \subset \mathbb{R}$ is measurable, we define the **harmonic measure** of E at $z \in \mathbb{H}$ to be

$$\omega(z, E, \mathbb{H}) = \int_{E} \frac{y}{(t - x)^2 + y^2} \frac{dt}{\pi}.$$
 (1.5)

When E is a finite union of open intervals this definition (1.5) is the same as definition (1.1). For $z = x + iy \in \mathbb{H}$, the density

$$P_z(t) = \frac{1}{\pi} \frac{y}{(x-t)^2 + y^2}$$

is called the **Poisson kernel** for \mathbb{H} . If $f \in C(\mathbb{R} \cup \{\infty\})$, the proof of Theorem 1.2 shows that

$$u_f(z) = \int_{\mathbb{R}} f(t) P_z(t) dt,$$

and for this reason u_f is also called the **Poisson integral** of f.

此为试读,需要完整PDF请访问: www.ertongbook.com