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PREFACE

This volume of the series Advances in Quantum-Many-Body Theories contains
the lecture notes of the second European summer school on Microscopic Quantum
Many-Body Theories and their Applications, which was hosted during the time of
Sept. 3— Sept. 14 by the Abdus Salam Center for Theoretical Physics in Miramare,
Trieste (Italy). The aim of this school was to introduce a selected group of graduate
students and young postdoctoral researchers to the dominant and most successful
techniques of modern microscopic many-body theory. This summer school is the
sequel of a preceding one that was held in September 1997 at the Universidad
Internacional Menéndez Pelayo (UIMP) in Valencia. ®

Modern quantum many-body theory (QMBT) had its birth some 50 years ago
with the pioneering work of Brueckner, Gell-Mann, Feynman, Landau, Noziéres,
Pines, to name only a few. It has since grown to become one of the most fundamen-
tal and exciting areas of modern theoretical physics. Its aims are to understand and
predict those properties of macroscopic matter that have their origins in the under-
lying interactions between, and the quantum-mechanical nature of, the elementary
constituents at the most microscopic level relevant to the energy range under con-
sideration. The field is naturally multi-disciplinary within physics. Hence, QMBT
has become an essential tool for researchers working in several, and apparently dif-
ferent, fields of physics, chemistry, and other disciplines. Among the specific areas
of application we may count condensed matter; nuclear and high-energy physics;
dense matter astrophysics; atoms and molecules; and elementary particles.

The variety of current approaches to the microscopic many-body problem in-
cludes density functional theory, the hypernetted chain/correlated basis functions
formalism, the coupled cluster method, and numerical simulation methods. An im-
portant point that must be stressed is that the rapid evolution of the different
formulations of QMBT over the last decade has provided valuable new insights re-
garding their intimate interrelationships. An appreciation of this underlying identity
will surely provide students and researchers with a much deeper understanding of
the physical content of QMBT itself and will offer a broader variety of practical
theoretical tools. In this sense, familiarity with the basics of many-body theories
should be part of the background knowledge of many researchers.

 Microscopic Quantum Many-Body Theories and their Applications, eds. J. Navarro and A. Polls,
in “Lecture Notes in Physics” Vol. 510 (1998).
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xii Preface

This book contains pedagogical introductions to the above-mentioned dominant
techniques of modern many-body theory, leading up to today’s front-line research.
These techniques have their roots in the standard analytical methods of theoretical
physics: perturbation theory, scattering theory, and stationarity principles. More-
over, the interplay between these methods and the computational ones has led to
fruitful and novel insights into the physics of many-particle systems that deserve
to be brought to the attention of the students.

A series of lectures on numerical simulation techniques has been delivered by
Gaetano Senatore. They followed relatively closely the published notes by D. Ceper-
ley® and it was felt that this adequate reference material on the subject did not
justify an independent re-writing.

Two aspects can be broadly distinguished in QMBT: the methods or techniques
used to study QMB systems, and the specific fields of application as well as ex-
perimental verifications. Mindful of these primary objectives, this volume contains
also reviews on modern developments and the applications include hypersherical
expansion methods, the theory of highly dynamic systems, as well as some key
experiments that address questions containing direct challenges to many—body the-
orists. The contributions by E. Arimondo and H. Godfrin are included; two more
seminars were given by P. Martin on metallic clusters and A. F. G. Wyatt on quan-
tum evaporation.

We have selected authors for all of the above subjects with particular care both
on the basis of outstanding reputations in the fields they represent and of their
recognized research experience and knowledge of generic many-body theory. This
volume, together with the lecture notes of the Valencia school, addresses the striking
lack of a related pedagogical literature that would allow researchers to acquire the
requisite physical insight and technical skills. While trying to avoid too much overlap
with the Valencia lecture notes, we have nevertheless tried to make the articles
contained in this volume self-contained.

The school was facilitated by a grant from the European Community (HPCF-
CT-1999-00197) as well as support from the ICTP and SISSA. The organizers would
like to thank Mrs. Doreen Sauleek for her efficient and courteous management.

A. Fabrocini
S. Fantoni
E. Krotscheck

bsee, for  example, http://archive.ncsa.uiuc. edu/Apps/CMP/papers/cep96b. ps and

http://www.mcc.uiuc. edu/SummerSchool/David)20Ceperley/ceperley.pdfit
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CHAPTER 1

DENSITY FUNCTIONAL THEORY

George F. Bertsch

Institute for Nuclear Theory
and Department of Physics and Astronomy
University of Washington Seattle WA 98195 USA
E-mail: bertsch@u.washington.edu

Kazuhiro Yabana

Institute of Physics
University of Tsukuba
Tsukuba 305-8577 Japan

Density functional theory is a remarkably successful theory of ordinary matter,
despite its ad hoc origins. These lectures describe the theory and its applications
starting from an elementary level. The practical theory uses the Kohn-Sham equa-
tions, well-chosen energy functionals, and efficient numerical methods for solving
the Schroedinger equation. The time-dependent version of the theory is also useful
for describing excitations. These notes are based on courses given by one of the
authors (GFB) at the Graduiertenkolleg in Rostock, Germany in March 2001 and
the Summer School on Microscopic Quantum Many-Body Theories in Trieste,
Italy in September 2001.

1. Introduction

The density functional theory is now widely applied in all areas of physics and
chemistry, wherever properties of systems of electrons need to be calculated. The
theory is very successful in calculating certain properties—hence its popularity. This
is reason enough for a student of theory to learn what it is all about. However, it
is quite different in philosophy to other many-body approaches that you will hear
about. The tried-and-true path in theoretical physics is to look for systematic ex-
pansions for calculating the properties of interest, finding controlled approximations
that be refined to achieve greater accuracy. The density functional theory is not at
all systematic, and in the end its justification is only the quality of its predictions.
However, it is rightly described as an ab initio framework, giving theories whose
parameters are determined a priori by general considerations. These lectures will
present the theory and its applications at a pace that I hope is understandable with
a minimum of prior formal training in advanced quantum mechanics. In the first

1



2 George F. Bertsch and Kazuhiro Yabana

lecture today, I will set the stage by deriving Hartree-Fock theory, presenting some
results on the homogeneous electron gas, and finally presenting the Hohenberg-Kohn
theorem, which has motivated the density functional approach.

I will begin the next lecture with a simple example of a density functional theory
which can be worked out, ending up with the Thomas-Fermi theory of many-electron
systems. Unfortunately, the Thomas-Fermi theory has very limited validity, and it
has not been possible to make useful improvements despite many attempts. The
DFT became useful only after Kohn and Sham introduced electron orbitals into
the functional. In their theory the variables are the single-particle wave functions of
electrons in occupied orbitals as well as the electron density. The theory then has a
structure very close to mean-field theories such as the Hartree theory. The emphasis
on using the density variable wherever possible leads directly to a version of the
theory called the Local Density Approximation (LDA). The LDA is a significant
improvement over Hartree-Fock (in ways we shall discuss), but at the same time one
can see deficiencies inherent in that scheme. A more complicated implementation
of the theory, called the Generalized Gradient Approximation, makes it surprising
accurate for calculating structures and binding energies, and in this form the theory
is widely applied.

The Kohn-Sham theory requires solving the 3-dimensional Schroedinger equa-
tion many times, and questions of algorithms and numerical methods are important
in making applications of the theory. There are several well-developed methods to
solve the equations, and each has its advocates. In my third lecture I will discuss
some of these numerical aspects. I will also survey some of the applications, noting
where the DFT is reliable and where its accuracy is problematic. I will also mention
some directions that have been taken to make more accurate theories, going beyond
the DFT.

All of this so far is a theory of matter in its ground state. We are of course
also very interested in the excitations of many-body systems, and the DFT can
also be applied to dynamics, where it is called time-dependent density functional
theory (TDDFT). In my fourth lecture I will derive the equations to be solved
and the algorithms used to solve the equations. The time-dependent theory is quite
computationally intensive, and much progress can be made by finding more efficient
numerical techniques. Finally, in the last lecture, I will show you some state-of-the-
art applications of the TDDFT.

Although it is not really necessary for my lectures, I will use a second-quantized
field operator notation because it is the most efficient way to write down expectation
values in many-particle spaces. Let us start with the basic Hamiltonian, which can
be taken as the sum of three terms,

W(r)t/ﬂ(r')ﬂﬁ(r')iﬁ(r)

H = /d37.__v¢,1‘(r) Vi (r) + = /d3 /d3 4
+ / Vg (0)01 (1) (x). (11)
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The terms represent the electron kinetic energy, the electron-electron interaction,
and the interaction of the electrons with an external field, respectively. The ! and
+ are field operators with the Fermion anticommutation relations, {$t(x), (")} =
§(r —r'). I will explain what one needs to know about these as we go along. As a
warm-up to the theory, I will derive the Hartree-Fock theory. But before that, some
issues of notation and units should be clarified.

1.1. Units and notation

In eq. 1.1 we used units in which e? has dimensions of energy-length. If you are used
to the MKS system, you can convert formulas by the substitution e? — €%k g/4meo.
One often sees formulas quoted in atomic units, with no explicit dimensional quan-
tities. In atomic units, lengths are expressed in units of the Bohr, ap = B /me? =
0.529.. A and energies in units of the Hartree, e?/ag = 27.2. eV. Confusingly, one
also sees energies quoted in Rydbergs, e?/2ao = 13.6.. €V. Personally, I do not care
for implicit atomic units because they hide the functional dependence on mass and
charge. It is also common to express densities in terms of the parameter 7, defined
as the radius in atomic units of a sphere whose volume is the reciprocal density.
Thus r, = (3n/47)1/3h%? /me?, where n is the density of electrons. In presenting
numerical results, I will often use “practical atomic units”, taking eV for energy
and A (0.1 nm) for length.

1.2. Hartree-Fock theory

Hartree-Fock theory is very simple to describe: it is the variational theory obtained
by the expectation value of the Hamiltonian, allowing all wave functions that can be
represented as Slater determinants. Let’s see how this comes about. Using second-
quantized notation, the Slater determinants constructed from a set of orthonormal
single-particle wave functions {a} are represented by a product of creation operators
¢! acting on the vacuum. An N-particle state is thus

N
IN) = el

The operators ct and c satisfy the anticommutation relation {c!,car} = 84,ar. To
get back the orbital wave function in position space, i.e. to reveal the spatial wave
function ¢4(r), we apply the field operator 1(r) to the state a. The anticommutator
gives the sought amplitude,

{w(r),cl} = ¢a(r).

We now take the expectation value of H in the state |N) and reduce the operator
expectation values by moving annihilation operators to the right and creation op-
erators to the left with the help of the above anticommutators. The result at the
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end is

2
(N|H|N) = Z /d3rV¢ v¢a+2/d3 /d3 f ir,l|¢012;¢bl2

_Z/ds /d3’

a<b

The result looks very similar to eq. (1.1) with respect to the kinetic energy and the
external potential energy terms. But the electron-electron interaction has given rise
to two terms, the direct (or Hartree) energy, and the exchange (or Fock) energy.
Notice also that the factor of 1/2 in eq. (1.1) has disappeared; instead one has a
double sum over the N(N —1)/2 orbital pairs (a, b). It is often convenient to rewrite
eq. (1.2) rearranging the sums slightly. Let us add terms with @ = b to the direct
and exchange sums. This won’t affect the result, because the direct and exchange
cancel if the two orbitals are the same. The direct term can then be written as
an independent sum over the a and b orbitals. Defining the single particle density
n(r) = (N|y!(r)y(r)|N) = Z |¢a(r)|?, the direct and external field terms are seen
to depend directly on n(r). The full expectation value becomes

a(T)¢a(r") b5 (") o (x) +Z/d3rv;n(r)|¢a12. (1.2)

N
(N|H|N) = Z% / Prgt - Ve, + / &r / A ()
- &’r [ d*r' ¢*( )Ba(r') b5 (x")u(r)
S [ o [ er e gemnes:
+ / BrVims (t)n(r) (1.3)

Now that we have the Hartree-Fock energy function, the next task is to find the
minimum within the allowed variational space. First let us recall quickly how varia-
tional principles work. If we have a integral expression J F(¢)dz that depends on a
function ¢(z), the condition that the value is stationary with respect to variations
in ¢ is

dF

dé
This must be satisfied for all values of . If there is a constraint that some other
integral [ G(¢)dz has a fixed value, the stationary condition contains the constraint
as a Lagrange multiplier,

=0. (1.4)

dF dG

— — =0. 1.5

i3 g (1.5)
We now apply this to the Hartree-Fock energy, eq. (1.2), varying with respect to a
wave function amplitude ¢}. Remembering that the wave functions were assumed to
be normalized, we impose the constraint [ ¢ipad®r = 1 with a Lagrange multiplier.

The multiplier will be denoted ¢,; it looks exactly like the energy in the Schrédinger

equation. The wave functions also have to be orthogonal as well, but it turns out
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Table 1. Atomization energies of selected molecules
Lig C2H: 20 simple molecules
(mean absolute error)
Experimental 1.04 eV 176 eV -
Theoretical errors:
Hartree-Fock -0.94 -4.9 3.1
LDA -0.05 24 1.4
GGA -0.2 0.4 0.35
T -0.05 -0.2 0.13

that it is not necessary to put in Lagrange multipliers to satisfy that condition.
There is one more technical point in carrying out the variation. When the gradient
of a function is varied, one first integrates by parts to move the gradient elsewhere
in the expression. One must impose suitable boundary conditions on the function
to carry out the integration by parts, and that must be remembered in solving the
differential equations that result from the variation.

Without going through the steps I will just quote the result here. One obtains
N equations for the amplitudes ¢,,

h2
LN, v . o
am V. Pal /|r i

+ Vert (r)da(r) = €aa(r) .

These are the Hartree-Fock equations. It is interesting to see how well they do
in making a theory of matter. In Table I is shown some energies calculated with
eq. (1.6), taken from Refs. 1, 2. The entries in the table are atomization energies,
which is the energy require to pull the cluster or molecule apart into individual
atoms. Results are given for a simple atomic cluster, a simple molecule, and a set of
molecules that are used as a testing ground for better theories. The mean absolute
error in the atomization energies (energy difference between the molecule and the
individual atoms in isolation) is 3 eV in the Hartree-Fock theory. The predicted
binding of the Liy clusters is a factor ten too low, and another alkali metal cluster
not in the table, Nay, is incorrectly predicted to be unbound. We conclude that on
a practical level Hartree-Fock is not accurate enough to be useful for chemistry or
for computing cluster structures.

r')d%r ¢ (1) @5 (r") s (1)

(1.6)

-3 / &' S g.(x')

1.3. Homogeneous electron gas

We will see next time that the density functional theory makes use of the properties
of the homogeneous interacting electron gas, and it will be useful to have on hand
some analytic results. There is a systematic expansion of the energy of an electron
gas accurate at high density. The first two terms are contained in the Hartree-Fock
theory. They are the kinetic energy of a free Fermi gas, and its exchange energy. As
part of the warmup, I will now derive them.



