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Preface

My early interests in Micromechanics was largely inspired by Professor Toshio Mura.
I had been studied under Professor Mura from 1994-1998, during which I had taken
his graduate class Micromechanics I and II, and I had worked with him in the
same office for almost four years. In specific, Professor Mura taught me equivalent
eigenstrain theory (which should be labeled as the Eshelby-Mura theory), dislo-
cation theory, and lattice statics/dynamics. As I can remember, one favorite line
of Professor Mura’s is: the eigenstrain method is panacea. My current interests
in Nanomechanics and Computational Nanomechanics researches are mainly moti-
vated by my Ph.D. dissertation advisor, Professor Wing Kam Liu, who is one of
the leading experts in Computational Nanomechanics today. Readers may find that
this book is greatly influenced by Professor Mura’s book, Micromechanics of Defects
in Solids (Kluwer Academic Publisher, 1987) and Professor Liu’s book, Nano Me-
chanics and Materials: Theory, Multiscale Methods and Applications (John Wiley
& Sons, Ltd., 2005).

Since spring 2001, I have been regularly teaching a graduate course on Mi-
cromechanics (CE236) in the University of California at Berkeley. This book is the
outcome of the lecture notes as well as research projects of that course. In recent
years, more focus of the course has been placed on the presentation of nanome-
chanics — an emerging field that is still very much under development. Therefore,
aside from traditional Micromechanics, a unique feature of this book is its in-depth
discussions of the latest topics on Nanomechanics and its applications. This in-
cludes: lattice Green’s function method (LGFM), embedded atom method (EAM),
quasi-continuum method, discrete dislocation dynamics (DDD), the Peierls-Nabarro
model, the Gurtin-Murdoch surface elasticity model, and the concept of the virial
stress, etc.

Many students who had taken the class have participated in the related class
research projects. Most of those researches have been published in peer-reviewed
Journals, and constitute a significant part of materials presented in this book. My
co-author, Dr. Gang Wang, is among the first group of students participating in
the class research project. Since then, we have been working togetier for several
years, and he has contributed significantly on many subjects discussed in this book.

vii
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I would also like to thank those who have made unique contributions to this book.
They are: Dr. Roger Sauer, Dr. Christian Linder, Dr. Chin-long Lee, Dr. Xiaohu
Liu, Dr. James Foulk III, Dr. Daniel Simkins, Jr., Dr. Elif Ertekin, Dr. Albert To,
Dr. Elisa Morgan, Dr. Anurag Gupta, Dr. Ni Sheng, Ms. Veronique Le Corvec,
Mr. Morteza Mahyari, Mr. Noang-Nam Nguyen among others.

During the writing of this book, many colleagues have given us encouragements
and suggestions. In particular, Professor Dong Qian of University of Cincinnati,
Professor L. Z. Sun of the University of California at Irvine, Professor H. Wang
of the Texas A & M University, Professor P. Sharma of University of Houston,
Professor X. Markenscoff of the University of California at San Diego, and Dr. L.
P. Liu of California Institute of Technology, who have generously provided their
own research results or materials helping us writing the book. I would also like
to acknowledge the financial support from National Science Foundation through
the Career Award (Grant No. CMS-0239130), which makes this book and related
researches possible.

The objective of the book is twofold: it can serve as a graduate textbook on
Micromechanics and Nanomechanics for the first-year graduate students, and also a
research guide book for researchers who want to master the fundamental theories of
Micromechanics and Nanomechanics through self-study. One of the main features of
this book is to give as many detailed derivations as necessary to assist the readers in
understanding the theoretical assumptions, mathematical techniques, and possible
limitations. To make the self-learning an enjoyable journey for our readers, our
motto is to spell out all the details even if they may be trivial. By doing so, we hope
to fill the gap between the literature and the actual research notes.

Due to our limitations, the book may contain mistakes, misrepresentations, and
errors; Moreover, we are aware the fact that some of the presentations in the book
may be biased or limited by our own technical capacities and inadequacies. Readers
can send their comments and suggestions to the following email address:

micro.and.nanomechanics@gmail.com

which, we hope, can be used to correct and improve the quality of the book in the
future.

Finally, we would also like to thank our wives, Yan Zhang (SL) and Furong
Wang (GW), and our families. Without their supports and encouragements, this
book will never be finished.

Shaofan L1

Spring 2007, Berkeley, California
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Chapter 1

INTRODUCTION

1.1 What are micromechanics and nanomechanics?

Generally speaking, MICROMECHANICS is a scientific discipline that studies me-
chanical, electrical, and thermodynamical behaviors of materials with microstruc-
ture; NANOMECHANICS is a research field that studies material behaviors at
nanoscale level.

In recent years, micromechanics has become an indispensable part of theoretical
foundation for many engineering fields and emerging technologies such as nanotech-
nology as well as biomedical and bioenvironmental technologies. Because of its
multidisciplinary characteristics, the term micromechanics has ‘multidisciplinary
interpretations’, and it has been used with different meanings in different contexts.
In the area of applied mechanics, micromechanics is often referred to as a hier-
archical mechanics and mathematics paradigm that is mainly used to study the
effective material properties of composite materials. A major objective of this kind
of study is to find the statistical average material properties of the heterogeneous
material through various homogenization methods. In condensed solid state physics
and statistical mechanics, this process is called the Coarse Graining. One of the
fundamental challenge of the contemporary statistical physics is how to construct
accurate coarse grain models.

Traditionally, the standard micromechanics methodology in engineering appli-
cations treats a composite material as a generic continuum model with a two-level
paradigm: microscopic structure and macroscopic structure. The material proper-
ties at microscale are usually given as a priori, and the task is to find the material
behaviors at macroscale, which are also called as the effective or overall material
properties. From this perspective, a material point at the macro-level may be
viewed as a microscopic material ensemble. In principle, the constitutive relations
at macro level should be able to be derived from the ensemble average of micro-
objects that are governed by the microscale physical laws, which can be quantum
mechanics, lattice dynamics, microscale plasticity, or elasticity, etc. Two subtle
points worth further clarification: (1) the constitutive relations or material behav-
iors at macroscale may be very much different from their counterparts at microscale,



2 INTRODUCTION TO MICROMECHANICS AND NANOMECHANICS

so the task of micromechanics is to find the unknown macroscale constitutive laws.
One of such examples is the well-known Gurson’s model, in which the microscale
counstitutive law is the rigid perfectly plasticity whereas the macroscale constitutive
law obtained by homogenization is a pressure sensitive damage plasticity; (2) in
many other cases, the microscale and macroscale constitutive laws are the same
type, e.g. elastic behaviors, however, the detailed elastic stiffness tensors at the
different scales are different. The effective material properties at a macroscale point
are average material properties of a microscale ensemble or a unit cell.

The conventional two-level paradigm of micromechanics is a special mathemati-
cal homogenization model that is usually not associated with any fixed length scale.
When studying material properties of a metal, 1 mm may be viewed as macroscale,
and the length scale at microlevel may range from nm to um ; whereas studying
the deformation of a dam, the macroscale may be up to 103m, and the length scale
of micro-structure may be around 10~2m.

In the conventional micromechanics, the classical ergodic assumption is usually
adopted: if a mesoscale is large enough, the underline micro-structure 18 assumed
to statistically homogeneous and stable in both space and in time. Therefore, one
simply uses spatial average to replace the temporal average of a random stochastic
process. In this sense, traditional micromechanics is essentially a particular ensem-
ble averaging theory that takes into account the overall effects of microstructure.

In engineering applications, the conventional micromechanics deals with prac-
tical engineering problems of a broad spectrum: effective material properties of
composite/synthetic materials, such as cementitious materials, geotechnical mate-
rials, etc.; constitutive modeling of bio-materials, such as bone, muscle, blood flow,
etc.; phase transformations; defects in solids, such as dislocation motion and crack
growth; and environmental problems, such as air pollution, ground water flow and
chemical transport, etc.

Contemporary condensed matter physics and applied mechanics in general agree
o]

that the physics at molecular or atomic level (A) can be described by the quantum
mechanics or related approximation theories, e.g. density functional theory; the
physics between the nm scale to sub-pm scale is governed by nanomechanics though
presently we are mainly relying on the molecular dynamics simulation; from pm
scale to or sub-mm length scale, micromechanics and related mesoscale mechanics
are playing more important roles; and the macroscopic phenomenological theory is
generally valid at the length scale mm level or up.

In this book, we shall focus on several areas of nanomechanics and micromechan-
ics. Different from traditional micromechanics, a salient feature of nanomechanics
is its multiscale and multiphysics characteristics. It has some features presented in
quantum mechanics, or quantum statistical mechanics, manifesting the statistical
effects at atomic or sub-atomic level; on the other hand, it also shares many features
of continuum mechanics, because a nanostructure could contain millions of atoms.

The impetus for contemporary micromechanics and nanomechanics is primarily
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due to the emergence of nanoscience and biomedical technology. It appears that
traditional physics alone is not sufficient to deal with many engineering problems
that are emerging from nanotechnologies and nanoengineering. There is a call for
nanomechanics and nanocomputational mechanics to serve as the infrastructure of
these developing engineering fields. For instance, much attention has been focused
recently on material properties of thin films; manufacturing devices and components
of a microelectromechanical system (MEMS), such as sub-micro sized sensors, mo-
tors; mechanics of nanotubes and nanowires; and micro-biophysics/biochemistry
systems, e.g. protein/DNA interaction in biomolecular simulation, etc.

From the perspective of higher learning and intellectual advancement, microme-
chanics has been developed into a rigorous and beautiful mathematical framework,
philosophical methodology, and powerful computational realization. Forty years
ago, micro-elasticity started with simple definitions of eigenstrain and inclusion,
came along with Eshelby’s equivalent homogenization theory [Eshelby (1957, 1959,
1961)]) and Hashin & Shtrikman’s variational principle [Hashin and Shtrikman
(1962a,b)], it is now the foundation of composite material research. Even though
the conventional micromechanics deals with the ob Jjects with the length scale around
p#m, it has been extensively used to estimate or to analyze the behaviors of nanocom-
posites and nanoscale structures, such as the composite made by nanowires and
quantum dots.

Besides homogenization, another main aspect of mciromechanics is the study of
defect mechanics at small scale. This includes: crack growth, dislocation motion,
and evolution of vacancies and interstitial, etc. In parallel to the development of
micro-mechanics, another major paradigm of defect mechanics is the Configura-
tional Force Mechanics. It seems to us that future trend of micro-mechanics is to
develop multiscale configurational mechanics that can describe defect motions in a
multiscale thermodynamic environment.

The main task of nanomechanics is to establish coarse-graining models at small
scales or to bridge the gap between the atomic scale and continuum scale. For ex-
ample, an efficient coarse-graining technique is the so-called Cauchy-Born rule. The
Cauchy-Born rule may be viewed as a simple “homogenization approximation” in
lattice statics and it serves as a passage or linkage between molecular mechanics and
continuum mechanics. The Cauchy-Born rule assumes that under certain kinematic
conditions, for instance, uniformity of local deformation gradient, the continuum en-
ergy density can be computed directly by using the atomistic potential, which links
the continuum elastic potential energy with the atomistic potential. By using the
Cauchy-Born rule, one may be able to derive the expressions for stress tensors and
elastic stiffness tensors directly from the interatomic potential, which allows the use
of the standard nonlinear finite element method in nanoscale computations.

Another useful nanomechanics approach is the Lattice Green’s Function (LGF)
method. It provides an important limit case for continuum mechanics, which allows
us examine the differences between the molecular mechanics and the continuum
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mechanics.

Presently, nanomechanics is only at its infancy. There are many approaches to be
explored and many new phenomena to be studied. In this book, we are attempting
to synthesize some recent research results at the forefront of nanomechanics research
while presenting traditional micromechanics in a coherent fashion. By doing so, we
hope that it may serve as a stepping stone for nanomechanics research in the quest
for a multiscale mechanics of our time.

Many research monographs on Micromechanics and Composite Materials have
been published over the years, notably the classical treatises by Professor Mura
[Mura (1987)], Christensen [Christensen (1979)], Nemat-Nasser and Hori [Nemat-
Nasser and Hori (1999)], Teodosiu [Teodosiu (1982)], Hahn and Tsai [Hahn and Tsai
(1980)], Kim and Karrila [Kim and Karrila (1991)], and Krajcinovic [Krajcinovic
(1996)]. In recent years, quite a number of books have been published focusing on
various different aspects of micromechanics and defect mechanics, such as statistical
micro-mechanics [Torquato (1997)], translation method and variational bounds for
composite materials [Milton (2002)], general introductions to micromechanics and
composite materials [Cristescu et al. (2004)] and [Qu and Cherkaoui (2006)], micro-
poromechanics [Dormieux et al. (2006)], and comprehensive treatise and handbook
on micromechanics as well [Buryachenko (2007)], among others.

The current literature on Micromechanics and Nanomechanics is either too spe-
cialized, too esoteric, to be understood, or too elementary to be applied. The
objective of the present book is to fill the gap between the graduate study or self-
study and the independent or creative research. To do so, firstly, we would like to
provide a self-study guide or a readable graduate textbook on Micromechanics and
Nanomechanics that is easy to read without much prerequisites and experiences
on applied mathematics, continuum mechanics or elasticity theories; Secondly, we
would like to merge the theory of micromechanics into the theory of nanomechan-
ics by find internal links and coherence between the two subjects and making the
subject more contemporary and more interesting to readers.

1.2 Vectors and tensors

For self-containedness and easy reference, the presentation starts with an outline
of some basic prerequisites: mathematics preliminaries, the element of elasticity
theory, and lattice and molecular statics and dynamics.

1.2.1 Vector algebra

Consider a Cartesian coordinate in a three dimensional space, R® with unit vector
basis, {e;},7 = 1,2,3. An arbitrary position vector, x, may be expressed as

X = r1€1 + Toey + x3e3 = x,€; = (X - €;)e; (1.1)



