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Introduction

The analysis of the current state and tendencies in radar development shows that novel
methods of target viewing are based on a detailed study of echo signals and their
informative characteristics. These methods are aimed at obtaining complete data on a
target, with emphasis on revealing new steady parameters for their recognition. One
way of raising the efficiency of radar technology is to improve available methods of
radio vision, or imaging. Radio vision systems provide a high resolution, considerably
extending the scope of target detection and recognition. This field of radar science and
technology is very promising, because it paves the way from the classical detection
of a point target to the imaging of a whole object.

The physical mechanism underlying target viewing can be understood on a heuris-
tic basis. An electromagnetic wave incident on a target induces an electric current on
it, generating a scattered electromagnetic wave. In order to find the scattering prop-
erties of the target, we must visualise its elements making the greatest contribution
to the wave scattering. This brings us to the concept of a radar image, which can be
defined as a spatial distribution pattern of the target reflectivity. Therefore, an image
must give a spatial quantitative description of this physical property of the target with
a quality not less than that provided by conventional observational techniques.

Radio vision makes it possible to sense an object as a visual picture. This is very
important because we get about 90 per cent of all information about the world through
vision. Of course, a radar image differs from a common optical image. For instance,
a surface rough to light waves will be specular to radio waves (microwaves), and
images of many objects will look like bright spots, or glare. However, the repre-
sentation of information transported by microwaves as visual images has become
quite common. It took much time and effort to get a high angular resolution in the
microwave frequency band because of the limited size of a real antenna. It was not
until the 1950-1960s that a sufficiently high resolution was obtained by a side-looking
radar with a large synthesised antenna aperture. The synthetic aperture method was
then described in terms of the range-Doppler approach.

At about the same time, a new method of imaging in the visible spectrum emerged
which was based on recording and reconstruction of the wave front and its phase,
using a reference wave. A lens-free registration of the wave front (the holographic
technique), followed by the image reconstruction, was first suggested by D. Gabor in



