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SERIES EDITOR’S PREFACE

‘Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the
je n'y serais point alle’’ human race. It has put common sense back
Jules Verne where it belongs, on the topmost shelf next
to the dusty canister labelled ‘discarded non-
The series is divergent; therefore we may be sense’.
able to do something with it. Eric T. Bell
O. Heaviside

Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non-
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as:
‘One service topology has rendered mathematical physics ..."; ‘One service logic has rendered com-
puter science ..., ‘One service category theory has rendered mathematics .... All arguably true. And
all statements obtainable this way form part of the raison d’étre of this series.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
volumes have appeared it seems opportune to reexamine its scope. At the time I wrote

“Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘tree’ of knowledge of
mathematics and related fields does not grow only by putting forth new branches. It
also happens, quite often in fact, that branches which were thought to be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (non-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to this there are such new emerging subdisciplines as ‘experimental
mathematics’, ‘CFD’, ‘completely integrable systems’, ‘chaos, synergetics and large-scale
order’, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit the deeper underlying interrelations more effort is
needed and so are books that can help mathematicians and scientists do so. Accordingly MIA will
continue to try to make such books available.

If anything, the description I gave in 1977 is now an understatement. To the examples of
interaction areas one should add string theory where Riemann surfaces, algebraic geometry, modu-
lar functions, knots, quantum field theory, Kac-Moody algebras, monstrous moonshine (and more)
all come together. And to the examples of things which can be usefully applied let me add the topic
finite geometry’; a combination of words which sounds like it might not even exist, let alone be
applicable. And yet it is being applied: to statistics via designs, to radar/sonar detection arrays (via
finite projective planes), and to bus connections of VLSI chips (via difference sets). There seems to
be no part of (so-called pure) mathematics that is not in immediate danger of being applied. And,
accordingly, the applied mathematician needs to be aware of much more. Besides analysis and
numerics, the traditioral workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs to cope increasingly with the nonlinear world and the
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extra mathematical sophistication that this requires. For that is where the rewards are. Linear
models are honest and a bit sad and depressing: proportional efforts and resulits. It is in the non-
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci-
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com-
puters; we would have no TV; in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard analysis, superspace
and anticommuting integration, p-adic and ultrametric space. All three have applications in both
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre-
quently proved the shortest path between ‘real’ results. Similarly, the first two topics named have
already provided a number of ‘wormhole’ paths. There is no telling where all this is leading -
fortunately.

Thus the original scope of the series, which for various (sound) reasons now comprises five sub-
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis-
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical and/or
scientific specialization areas;

- new applications of the results and ideas from one area of scientific endeavour into another;

- influences which the results, problems and concepts of one field of enquiry have, and have had,
on the development of another.

A differential equation of the form y”(tH A (f)y(t) = O looks very familiar and certainly a great
many volumes have been written about the corresponding boundary-value problems. In this book,
however, the equation above is an operator equation, and that makes it unique. The spectral
analysis of Sturm-Liouville differential operator equations in the case of an infinite-dimensional
space, began very recently (in spite of the many potential applications) and this book, by two well
known researchers in the area, aims to present the subject systematically together with its natural
links to the important area of extensions of symmetric operators.

The shortest path between two truths in the
real domain passes through the complex
domain.

J. Hadamard

La physique ne nous donne pas seulement
I'occasion de resoudre des problémes ... elle
nous fait pressentir la solution.

H. Poincare

Bussum, January 1990

Never lend books, for no one ever returns

them; the only books I have in my library

are books that other folk have lent me.
Anatole France

The function of an expert is not to be more
right than other people, but to be wrong for
more sophisticated reasons.

David Butler

Michiel Hazewinkel



Preface

The book deals with the theory of boundary value problems for second-order oper-
ator differential equations of the form

v'(t)+ A(t)y(t) =0 (t€[a,b], —oc0o<a<b<oo),

where the A(t) are semi-bounded self-adjoint operators on a separable Hilbert space
$. The study of differential equations whose coefficients are unbounded operators
on a Hilbert or Banach space is useful not only because these include many partial
differential equations but also because it offers the possibility of looking at ordinary
as well as partial differential operators from a single viewpoint.

The studies of the last 30 years have enriched the theory of operator differential
equations with significant results. The presentation of the Gauchy problem and
the stability theory of solutions can be found both in textbooks on the theory
of operators (Hille-Phillips [1], for example) and in special monographs (see, for
example, Lions [1], S. Krein [1], Daletsky—M. Krein [1]). The spectral analysis of the
Sturm-Liouville operator differential equation, which was given a lot of attention in
the scalar case and in the case of a finite-dimensional §), began its development quite
recently in the case of an infinite-dimensional space and an unbounded operator
potential A(t). Naturally, then, there are no books which reflect on this trend. In
this book we would like to fill this gap, if not completely, then at least partially.

For the scalar Sturm-Liouville equations one usually considers two cases, that
of a bounded and that of an unbounded interval, i.e. the regular and the singular
case. They are known to differ as regards formulation of problems, methods of
investigation, and fields of applications.

When studying operator equations one must take into account not only bound-
edness or unboundedness of the interval, but also the character of unboundedness
of the potential. The fact whether the operators A(t) are lower or upper semi-
bounded proved to be fundamentally important. In this connection, the equations
are divided into elliptic (A(t) < 0) and hyperbolic (A(t) > 0). The Laplace equa-
tion and the D’Alembert equation serve as respective models for these. In view
of the limited volume of the book and the unlimited stream of results we mainly
consider the case of a bounded interval and present the theory of dissipative (in
particular, self-adjoint) boundary value problems. It is quite natural that while
selecting material the authors’ personal interests somewhat prevailed.

In the first chapter we give basic definitions and (almost without proofs) classical
theorems from the theory of Banach, Hilbert, and locally convex topological spaces,
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and from the theory of linear operators on them. This information is necessary for
understanding the subsequent chapters. Since the principal object of study of this
book is a vector-function with values in infinite-dimensional spaces, while the major
instrument of investigation is the operational calculus of self-adjoint operators,
these are given greater attention. .

The second chapter deals with the theory of boundary values of solutions of
second-order elliptic operator differential equations which are smooth inside the
interval. On the one hand, this theory plays an important role in the formulation
and investigation of boundary value problems for such equations; on the other hand,
it gives a uniform approach to the theory of boundary values of analytic functions,
allowing one to obtain, in particular, well-known theorems concerning existence of
boundary values of harmonic (analytic) functions u(z,t) in the upper half-plane, in
the Schwartz space of distributions if u(z,t) has power growth as t approaches the
real axis and in the spaces of ultradistributions if u(z, t) has exponential growth as
t approaches the real axis. This theory also makes it possible to establish analogous
results for solutions of homogeneous partial differential equations different from the
Laplace equation which are smooth inside the domain.

The proofs of the principal results are based on the spectral representation the-
orem for a self-adjoint operator on a Hilbert space. Also, chains of spaces with
positive and negative norms and their inductive and projective limits are essen-
tially used. Their theory is set forth in sufficient detail.

The third chapter consists in fact of two parts. The first part is devoted to the
theory of extensions of abstract symmetric operators. Its presentation somewhat
differs from the traditional one and is adapted to the theory of boundary value
problems. The description of various classes of extensions (maximal dissipative, self-
adjoint, solvable and others), as well as the structure of the spectrum of extensions
from these classes, is given in terms of so-called boundary value spaces. The latter
are convenient and natural because they turn into the usual boundary condition
in certain concrete situations. Here, an important place is occupied by theorems
about various representations of binary relations in a Hilbert space. These are the
starting point in constructing the theory of extensions.

In the second part this theory is applied to investigating boundary value problems
for the formally self-adjoint Sturm-Liouville expression with operator potential of
hyperbolic type given on a bounded interval. The minimal operator generated by
it is symmetric and has infinite deficiency numbers when dim ) = co. Each ex-
tension of it is associated with some boundary value problem in the sense that
vector-functions in the domain of the extension satisfy a definite boundary con-
dition at the ends of the interval. Therefore, a lot of properties of extensions
(self-adjointness, maximal dissipativeness, structure of the spectrum, etc.) can be
completely described in terms of the coefficients of the equation and the boundary
conditions corresponding to these extensions.

The fourth chapter contains results concerning the spectral theory of boundary
value problems in the elliptic case. The various classes of dissipative problems
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are described in it, and the asymptotic distribution of their eigenvalues is studied.
Particular attention is paid to self-adjoint boundary value problems with discrete
spectrum. The behaviour of the distribution function of the eigenvalues of such
a problem depends essentially on the boundary conditions. Classes of self-adjoint
boundary value problems for which the dominant term in the asymptotics of the
distribution function has given order of growth are singled out. For some of them the
second-order terms of the asymptotics are studied, and an estimate of the remainder
is given. We also establish a connection between the asymptotic behaviour of the
distribution function of the eigenvalues and the smoothness up to the boundary of
elements in the domain of the self-adjoint extension corresponding to the boundary
value problem considered.

The fifth, and last, chapter deals with the theory of boundary values at zero
of solutions of a first-order differential equation of the form y'(t) + Ay(t) = 0
(t € (0,00)) in a Banach space. One of the reasons to construct such a theory is
the hope to find a general approach to the well-known Riesz theorems concerning
boundary values in L, spaces (p # 2) of analytic functions, from the viewpoint of
evolution equations.

Since infinity as well as zero is a singular point for such an equation, we also dis-
cuss results related to the behaviour of solutions at co, which is related to stability
theory.

The book provides a number of examples which prove that the operator approach
makes it possible not only to extend the class of already studied partial differential
equations and their boundary value problems, but also to look from another point
of view to the spectral theory of self-adjoint boundary value problems for such
classical expressions as those of Laplace and D’Alembert.

We will not always formulate the results in the most general form. We have
preferred to select a somewhat average level of generality (a “golden mean”). The
rest is added by way of comments and references.

To make reading easy, the principal statements are distinguished in the form of
theorems, lemmas, corollaries, and remarks as well as formulas.

It gives us pleasure to thank M.G. Krein and Ju.M. Berezansky, whose great
influence we felt throughout our scientific activities. Their work on the theory
of boundary value problems and our continual contact with them determined the
subject of our investigations and the subject matter of the book.

In writing the manuscript we were helped by our pupils and colleagues. Sections
1-3 (Chapter 3) were written together with A. N. Kochubei, Section 6 (Chapter
1) and Section 3 (Chapter 4) - with V. A. Mikhailets, Section 6 (Chapter 4) -
with L. L. Vainerman. V. V. Gorodetsky, A. L Kashpirovski, A. V. Knyaziuk,
V. V. Levchuk, L. B. Fedorova participated in the discussion of some sections of
the book. We sincerely thank all of them.

In preparing the present version we were helped very much by A. N. Kochubei
and we would like to express our particular gratitude to him.



i <
Contents / ‘
Preface N\ ix
Chapter 1. Some information from the theory of linear operators 1
1 Banach spaces and continuous linear operators on them 1
2 Hilbert spaces and bounded operators on them 7
3 Vector-valued functions 13
4 Unbounded operators. Spectral expansion of self-adjoint operators 20
5 The operational calculus 29
6 Singular numbers of completely continuous operators and their
properties 35
7 Locally convex topological spaces 44

Chapter 2. Boundary values of solutions of homogeneous operator differential

equations 54
1 Positive and negative spaces 54
2 Some spaces of test and generalized elements 59
3 The exponential function of a non-negative self-adjoint operator 79
4 Operator differential equations of the first order 88
5 Operator differential equations of the second order 91
6 Boundary values of periodic harmonic functions 107
7 Boundary values of harmonic functions in the upper half-plane that
are square integrable over straight lines parallel to the real axis 116
8 The operational calculus for certain classes of non-self-adjoint
operators 127
9 The Cauchy problem for certain parabolic equations 135
Chapter 3. Extensions of symmetric operators 146
1 Dissipative extensions and boundary value problems 146
2 Positive definite symmetric operators and solvable extensions of them 157
3 Spectral properties of extensions 164
4 Boundary value problems for the Sturm-Liouville equation with
bounded operator potential 173
5 Boundary value problems for the Sturm-Liouville equation of
hyperbolic type with unbounded operator potential 177

vii



viii CONTENTS

Chapter 4. Boundary value problems for a second-order elliptic-type

operator differential equation 201

1 Dissipative boundary value problems 201

2 Some classes of extensions of the minimal operator 210
3 The asymptotics of the spectrum of the Dirichlet and the Neumann

problem 218

4 On the asymptotics of the spectra of general self-adjoint problems 226

5 Other boundary value problems 234

6 The case of a variable operator-valued coefficient 241

7 Applications to partial differential equations 252

Chapter 5. Boundary values of solutions of differential equations in a

Banach space 257
1 Semigroups of operators and their generators 257
Functions of the generator of a contraction Cy-semigroup 262
3 Boundary values at zero of solutions of a first-order differential
equation in a Banach space 274
4 First-order equations of parabolic type in the case of
degeneration 291
5 The behaviour of solutions of first-order operator differential
equations at infinity 297
6 Applications 311
Bibliographical Comments 316
References 326

Subject Index 345



CHAPTER 1

Some Information from the Theory of Linear
Operators

1. Banach Spaces and Continuous Linear Operators on Them

1.1. NORMED AND BANACH SPACES

A set X is called a complex normed space if
(1) X is a vector space over the field C! of complex numbers;
(2) for each element z € X there is defined a non-negative number ||z|| (the norm
of z) possessing the following properties:
(i) llazll = |alllz]l (Vz € X, Va € C');
(i) llz+yll < ll=ll +llyll (Vz,y € X);
(iii) ||z|]| =0 if and only if z =0.
A sequence z, € X (n € N = {1,2,...}) is said to converge in X to an element z
if limp . oo || Zn — z|| = 0. A sequence z, (n € N) from X is called fundamental if
limy, p—oo ||Zn — Zm|| = 0.

A normed space ‘B is called a Banach space if it is complete, i.e. each fundamental
sequence in it has a limit. Any incomplete normed space can be completed, i.e.
imbedded into a certain Banach space as a dense linear subset.

A Banach space is called separable if it contains a countable dense set. We will
consider only separable Banach spaces.

If another norm ||z||; is given in the normed space X with norm ||z||;, then for

convergence with respect to || - || of each sequence that is convergent with respect
to || - ||1 it is necessary and sufficient that there exists a positive constant ¢ such
that

l2ll2 < el|=]]s-

Two norms || - ||; and || - ||2 are called topologically equivalent if convergence with
respect to one of them implies convergence with respect to the other. It is clear
that in a normed space X, two norms | - ||; and || - |2 are topologically equivalent
if and only if there exist positive constants c;, c; such that

ciflzlls < [|=zll2 < e2l|z|s- (1.1)
1.2. ALGEBRAS, BANACH ALGEBRAS, IDEALS

A complex linear space 2 over the field C! is called an algebra if a multiplication

1



2 CHAPTER 1

of its elements is introduced in such a way that the multiplication operation is
distributive relative to addition, and commutes with multiplication by complex
numbers. If multiplication is commutative, i.e. zy = yz (Vz,y € A), then the
algebra is called commutative.

If the algebra 2 is a Banach space and multiplication is continuous with respect
to each of the factors, then 2 is called a Banach algebra. A unit element in 2 is a
vector e € A such that ze = ez = z for each z € A. An algebra containing a unit
element is called an algebra with a unit. If an algebra has no unit it can always
be complemented so that the extension contains a unit. In any Banach algebra
with a unit one can replace the norm by an equivalent one for which the following
properties are satisfied:

lzyll < ll=llllsll (V2,9 € 2);  le]| = 1.

Therefore, it is usually assumed that a Banach algebra has a unit, and the above-
mentioned properties for a norm hold.
A set I of elements from the algebra 2 is called a (two-sided) ideal if:
(i) z+ye€ I for any z,y € I;
(ii) zz€ I, 2z € I for any z € I, any z € 2.
An ideal I of 2 is called proper if I # 2. A maximal ideal is a proper ideal which
is not contained in other proper ideals.

1.3. CONCRETE BANACH SPACES

The space C™ consists of all ordered n-tuples {a;, -, @y} of complex numbers. It
is an n-dimensional Banach space with respect to the norm

o \3
lalles = (z: laal"’) :

We denote by R" its subset of all n-tuples of real numbers.

The space C*[a,b] is the set of all k times continuously-differentiable complex-
valued functions on the closed interval [a,b] of the real line R!. The norm of a
function f € C*[a,b] is defined by

Ifllcklae) = max {|f(£)],. .., 1F®) (&)]}.

t€[a,b]

With this norm, C*[a, b] forms a Banach space as well as a Banach algebra. Let
C®a, ] = Cla, b]. It is the space of all continuous functions f(t) (a < t < b), and

I/ lotas = max 7).

The space Ly(a,b). The elements of this space are the complex-valued functions
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f on (a,d) for which

b
b
||fnL,,(a,b)=(/a lf(t)l”dt) <o (1.2)

(functions coinciding almost everywhere are identified). Ly(a,b) with the norm
(1.2) is a Banach space. The space L,(Q2), where (2 is a domain in R", is similarly
defined.

1.4. BOUNDED LINEAR OPERATORS ON A BANACH SPACE

Let B; and B, be Banach spaces. A mapping 4 : B; — B, is called a linear
operator if

A(az + By) = aAz + BAy (Y, B € CY).

The linear operator A is continuous if z,, — z in B; implies Az, — Az (n — o0)
in B,, and it is called bounded if

|4z, < cllz|=, (1.3)
for some positive constant c. The least of the constants ¢ in the inequality (1.3) is

the norm of the operator A:

Az|»
I|A|| = sup —” I, = sup |Az|s,. (1.4)
z€B, ”:':”‘31 z:||z||8, =1

It is not difficult to show that a linear operator A is continuous if and only if it is
bounded.

The set of all bounded linear operators A : B; — B, is denoted by [B;, B.).
This set is a Banach space with the norm (1.4) and the natural definition of addition
of operators and multiplication of an operator by a number:

(A+ B)z = Az + Bz, (aA)z= A(az)= aAz.
If B:B; — B3, then the formula
Cz = B(Az) (z€'B,)

defines a linear operator C : ®B; — B3, called the product of A and B. For bounded
operators A, B the operator C is bounded too, and

el < 114l B
The inverse of A is the operator A~! : B, — B, for which
A_IA = El, AA-I = Eg,

where E; : B; — B; and E; : B; — B, are the identity operators on B; and
B,, respectively.
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The set of bounded linear operators from B into B is denoted by [B], i.e. [B] =
[®B,B]. With the above-defined multiplication of operators, [B] forms a Banach

algebra.

Two Banach spaces are called isomorphic if there exists a one-to-one continuous
linear mapping of one space onto another which has a continuous inverse. Such
a mapping is called an isomorphism. A norm-preserving isomorphism is called an
isometric isomorphism.

Let us formulate some important theorems.

THEOREM 1.1. (Banach). Assume that an operator A € [By, B;| maps a Banach
space By onto a Banach space B, one-to-one. Then A™! € [Bg, Bi|, hence the
spaces ‘B; and B2 are 1somorphic.

It follows from this theorem that if a space B is Banach with respect to | - ||;
and | - ||z, then for the topological equivalence of these norms the realization of any
one-side bound in (1.1) is sufficient.

THEOREM 1.2. (Banach-Steinhaus). Let 9N be the set of operators from B, B5]
such that

sup ||Az| < oo
em

for each z € B,. Then the set M 15 bounded, that s
sup ||A] < oo.
AEM

This theorem is also called the uniform boundedness principle. It follows from this
theorem that if a sequence of operators A, «. [By, B3] converges on each element
z € B, then the inequality
Az = lim A,z
n—o00
defines a continuous linear operator from ‘B; into 9B,.

A linear operator A : B; — B, is called compact, or completely continuous, if
it maps any bounded set of ®B; to a compact set of B;. A compact operator is
continuous. A linear operator is compact if it maps the unit sphere of ®8; into a
compact set of B.

1.5. DIRECT SUMS OF SUBSPACES AND PROJECTORS

A closed linear subset of a Banach space B is called a subspace of it. A Banach
space is said to be the direct sum of its subspaces B; and B,, which is written as

B = B, 4 B, (1.5)
if an arbitrary element z € B can be uniquely represented in the form

=21 + 29 (1’,’ € %.) (16)



THEORY OF LINEAR OPERATORS 5

The direct decomposition (1.5) generates two linear operators P; : 8 — B, and
P, : B— B,, defined as follows: if z is represented in the form (1.6), then

P1$B=$1, P2z=272.
The following properties of the operators P; (z = 1,2) are trivial:
P2=P, P +P=E, PP=PP =0

(E is the identity operator). Moreover, the P; are continuous. In fact, introduce
on ‘B a new norm

Il = llza]l + llz=]l

Since z = z1 + 72, ||z|| < ||z1]] + ||2z2]| = ||z]l1. If a sequence z" = zT + zJ is
fundamental with respect to the norm || - ||1, then the sequences z} and z3 are
fundamental. So, z7 — z; € By, 25 — z2 € Ba. Then z” — z; + 22 € B in both
norms || - || and || - ||1. Therefore, ‘B is also complete under the norm || - ||. Hence
there exists a constant ¢ > 0 such that

|zl < ell=l],
whence
|Pzl| = ||zl < llzlls < ellzll  (=1,2),

i.e. the operators P; are continuous.

An operator P € [*B] is called a projection operator or projector if P2 = P. Thus,
the operators P;, Ps, constructed above, are projectors. The converse assertion is
also valid. If P;, P, are projectors on B and P; + P, = E, then they generate a
direct decomposition (1.5), where B, = P,B, B, = P,B.

A decomposition of B into a direct sum of several subspaces is defined in the
natural way.

1.6. THE DIRECT SUM OF BANACH SPACES

Let B, --,B,, be Banach spaces with norms || -||1, -+, || - ||n, respectively. By the
direct sum

B =B, 4By 4+ Bn

we mean the Banach space of ordered n-tuples z = {z1,%2, -, z,} (z; € B;) with
the natural definition of addition of n-tuples and multiplication of an n-tuple by a
number. The norm in B is given by

n 4
=l = (Z IIZsII?) -



