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Preface

Information geometry provides the mathematical sciences with a new framework
for analysis. This framework is relevant to a wide variety of domains, and it
has already been usefully applied to several of these, providing them with a
new perspective from which to view the structure of the systems which they
investigate. Nevertheless, the development of the field of information geometry
can only be said to have just begun.

Information geometry began as an investigation of the natural differential
geometric structure possessed by families of probability distributions. As a
rather simple example, consider the set S of normal distributions with mean p

and variance o2:

By specifying (i, o) we determine a particular normal distribution, and hence S
may be viewed as a 2-dimensional space (manifold) which has (u,0) as a coor-
dinate system. However, this is not a Euclidean space, but rather a Riemannian
space with a metric which naturally follows from the underlying properties of
probability distributions. In particular, when S is a family of normal distribu-
tions, it is a space of constant negative curvature. The underlying characteristics
of probability distributions lead not only to this Riemannian structure; an in-
vestigation of the structure of probability distributions leads to a new concept
within differential geometry: that of mutually dual affine connections. In addi-
tion, the structure of dual affine connections naturally arises in the framework
of affine differential geometry, and has begun to attract the attention of math-
ematicians researching differential geometry.

Probability distributions are the fundamental element over which fields such
as statistics, stochastic processes, and information theory are developed. Hence
not only is the natural dualistic differential geometric structure of the space
of probability distributions beautiful, but it must also play a fundamental role
in these information sciences. In fact, considering statistical estimation from a
differential geometric viewpoint has provided statistics with a new analytic tool
which has allowed several previously open problems to be solved; information
geometry has already established itself within the field of statistics. In the fields
of information theory, stochastic processes, and systems, information geometry

vii
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is being currently applied to allow the investigation of hitherto unexplored pos-
sibilities.

The utility of information geometry, however, is not limited to these fields. It
has, for example, been productively applied to areas such as statistical physics
and the mathematical theory underlying neural networks. Further, dualistic
differential geometric structure is a general concept not inherently tied to prob-
ability distributions. For example, the interior method for linear programming
may be analyzed from this point of view, and this suggests its relation to com-
pletely integrable dynamical systems. Finally, the investigation of the informa-
tion geometry of quantum systems may lead to even further developments.

This book presents for the first time the entirety of the emerging field of
information geometry. To do this requires an understanding of at least the
fundamental concepts in differential geometry. Hence the first three chapters
contain an introduction to differential geometry and the recently developed the-
ory of dual connections. An attempt has been made to develop the fundamental
framework of differential geometry as concisely and intuitively as possible. It
is hoped that this book may serve generally as an introduction to differential
geometry. Although differential geometry is said to be a difficult field to un-
derstand, this is true only of those texts written by mathematicians for other
mathematicians, and it is not the case that the principal ideas in differential
geometry are hard. Nevertheless, this book introduces only the amount of dif-
ferential geometry necessary for the remaining chapters, and endeavors to do so
in a manner which, while consistent with the conventional definitions in mathe-
matical texts, allows the intuition underlying the concepts to be comprehended
most immediately.

On the other hand, a comprehensive treatment of statistics, system theory,
and information theory, among others, from the point of view of information
geometry is for each distinct, relying on properties unique to that particular
theory. It was beyond the scope of this book to include a thorough description
of these fields, and inevitably, many of the relevant topics from these areas are
rather hastily introduced in the latter half of the book. It is hoped that within
these sections the reader will simply gather the flavor of the research being
done, and for a more complete analysis refer to the corresponding papers. To
complement this approach, many topics which are still incomplete and perhaps
consist only of vague ideas have been included.

Nothing would make us happier than if this book could serve as an invitation
for other researches to join in the development of information geometry.



Preface to the English
Edition

Information geometry provides a new method applicable to various areas includ-
ing information sciences and physical sciences. It has emerged from investigat-
ing the geometrical structures of the manifold of probability distributions, and
has applied successfully to statistical inference problems. However, it has been
proved that information geometry opens a new paradigm useful for elucidation
of information systems, intelligent systems, control systems, physical systems,
mathematical systems, and so on.

There have been remarkable progresses recently in information geometry.
For example, in the field of neurocomputing, a set of neural networks forms a
neuro-manifold. Information geometry has become one of fundamental meth-
ods for analyzing neurocomputing and related areas. Its usefulness has also
been recognized in multiterminal information theory and portfolio, in nonlinear
systems and nonlinear prediction, in mathematical programming, in statistical
inference and information theory of quantum mechanical systems, and so on.
Its mathematical foundations have also shown a remarkable progress.

In spite of these developments, there were no expository textbooks covering
the methods and applications of information geometry except for statistical
ones. Although we published a booklet to show the wide scope of information
geometry in 1993, it was unfortunately written in Japanese. It is our great
pleasure to see its English translation. Mr. Daishi Harada has achieved an
excellent work of translation.

In addition to correction of many misprints and errors found in the Japanese
edition, we have made revision and rearrangement throughout the manuscript
to make it as readable as possible. Also we have added several new topics, and
even new sections and a new chapter such as §2.5, §3.2, §3.5, §3.8 and Chapter 7.
The bibliography and the guide to it have largely been extended as well. These
works were done by the authors after receiving the original translation, and it
is the authors, not the translator, who should be responsible for the English
writing of these parts.

This is a small booklet, however. We have presented a concise but compre-
hensive introduction to the mathematical foundation of information geometry
in the first three chapters, while the other chapters are devoted to an overview
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of wide areas of applications. Even though we could not show detailed and
comprehensive explanations for many topics, we expect that the readers feel its
flavor and prosperity from the description. It is our pleasure if the book would
play a key role for further developments of information geometry.

Year 2000

Shun-ichi Amari
Hiroshi Nagaoka
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Chapter 1

Elementary differential
geometry

Differential geometry is a mature field of mathematics and has many introduc-
tory texts; still, it is not an easy field to master. However, in this book we shall
require only the fundamental ideas and methodologies of differential geometry.
The main theme of modern differential geometry has been to characterize the
global properties of manifolds, and much theory has been developed towards
this end. At this time, the field of information geometry (mostly) requires only
the theory of the locally characterizable properties of manifolds.

For information geometry the most important aspects of differential geome-
try are those which allow us to take problems from a variety of fields: statistics,
information theory, and control theory; visualize them geometrically; and from
this develop novel tools with which to extend and advance these fields. In this
chapter we present an introduction to differential geometry from this point of
view.

1.1 Differentiable manifolds

A differentiable manifold is a mathematical concept denoting a generaliza-
tion/abstraction of geometric objects such as smooth curves and surfaces in
an n-dimensional space. Intuitively, a manifold S is a “set with a coordinate
system.” Since S is a set, it has elements. It does not matter what these ele-
ments are (these elements are also called the points of S.) For example, in this
book, we shall introduce manifolds whose points are probability distributions
and also those whose points are linear systems. S must also have a coordinate
system. By this we mean a one-to-one mapping from S (or its subset) to R",
which allows us to specify each point in S using a vector of n real numbers
(this vector is called the coordinates of the corresponding point). We call the
natural number n the dimension of S, and write n = dim S.

We call a coordinate system that has S as its domain a global coordinate

1



2 1. ELEMENTARY DIFFERENTIAL GEOMETRY
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Figure 1.1: A coordinate system for S.

system. In our analysis below, we shall consider only the case where there exists
a global coordinate system. However, in general there are many manifolds
which do not have global coordinate systems. Examples of such a manifold
include the surface of a sphere and the torus (the surface of a donut). These
manifolds have only local coordinate systems. This may be viewed informally
in the following way. Consider an open subset U of S, and suppose that U has
a coordinate system. This provides a local coordinate system for those points
contained in U. For a point not contained in U, consider another open subset V'
containing that point which also has a coordinate system. Repeat this process
until the original set S is covered, so that each point in S is contained in an
open subset which has a coordinate system. Then this collection of open subsets
of S and their corresponding coordinate systems would allow us to express any
point in S using coordinates. However, as mentioned above, in this chapter we
shall consider only the case when there exists a global coordinate system. This
will suffice to prepare us for the later chapters. Indeed, since in this chapter
we principally develop the local theory of manifolds, this assumption does not
typically affect the generality of the analysis.

Let S be a manifold and ¢ : S — R” be a coordinate system for S. Then
¢ maps each point p in S to n real numbers: ¢(p) = [£X(p),---,E"(p)] =
[€1,--+,€"]. These are the coordinates of the point p. Each £ may be viewed as
a function p — £*(p) which maps a point p to its i*? coordinate; we call these n
functions £ : S — R (i = 1,---,n) the coordinate functions.! We shall write
the coordinate system ¢ in ways such as ¢ = [¢1,---,€"] = [¢!] (Figure 1.1).

Let 1 = [p] be another coordinate system for S. Then the same point p € S
has both the coordinates [¢'(p)] = [¢'] € R™ with respect to the coordinate
system ¢, and the coordinates [p'(p)] = [p’] € R™ with respect to the coordinate
system 9. The coordinates [p'] may be obtained from [£‘] in the following
way. First apply the inverse mapping ¢! to [£]; this gives us a point p in S.
Then apply 1 to this point; this result is [p’]. In other words, we apply the

1'We shall use &%, p* to denote both (the variable representing) the i*? coordinate of a point
and a coordinate function. This is similar to writing “the function y = y(z).”
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transformation on R™ given by
woﬂo_l:[él""vgn]’_’[p17"'7pn]' (11)
This is called the coordinate transformation from ¢ = [£'] to ¢ = [p'] (Figure

1.2).

To consider S as a manifold means that one is interested in investigating
those properties of S which are invariant under coordinate transformations. In
particular, differential geometry analyzes the geometry of objects using differ-
ential operators with respect to a variety of functions on S, and it would be
problematic if these operators depended fundamentally on the choice of coordi-
nates. Hence it is necessary to restrict the coordinate systems to those which
allow smooth transformations between each other.

In order to properly formalize the concepts described above, let us now
formally define manifolds for which there exists a global coordinate system.

Let S be a set. If there exists a set of coordinate systems A for S which
satisfies the conditions (i) and (ii) below, we call S (more properly, (S,.4)) an
n-dimensional C'*° differentiable manifold, or more simply, a manifold.

(i) Each element ¢ of A is a one-to-one mapping from S to some open subset
of R™.

(ii) For all ¢ € A, given any one-to-one mapping v from S to R”, the following
holds:

PYPeA <= Yo go_l is a C* diffeomorphism.

Here, by a C*° diffeomorphism we mean that 1o¢~! and its inverse o ~!

are both C*° (infinitely many times differentiable). From these conditions, and
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given the coordinate transformation described in Equation (1.1), it follows that
we may take the partial derivative of the function p' = pi(g!,---,£") with
respect to its variable arguments as many times as needed, and that the same
holds for & = £*(p',---, p"). In this book, the condition C* is used a number
of times, but in fact it is usually not necessary; it would suffice for the relevant
functions to be differentiable some appropriate number of times. Intuitively,
then, we may consider C* to simply mean “sufficiently smooth”.

Let S be a manifold and ¢ be a coordinate system for S. Let U be a subset
of S. If the image ¢(U) is an open subset of R™, then we say that U is an open
subset of S. From condition (ii) above, we see that this property is invariant over
the choice of coordinate system . This allows us to consider S as a topological
space. For any non-empty open subset U of S, we may restrict ¢, the coordinate
system of S, to obtain |y (the mapping U — R"™ obtained by restricting the
domain of ¢ to U), which may be taken as a coordinate system for U. Hence
we see that U is a manifold whose dimension is the same as that of S.

Let f : S — R be a function on a manifold S. Then if we select a coordinate

system ¢ = [£'] for S, this function may be rewritten as a function of the
coordinates; i.e., lettmg [€'] denote the coordinates of the point p, we have
f(p) = f(€*,---,€"), where f = f op~!. Note that f is a real-valued function

whose domain is »(S), an open subset of R". Now suppose that f(£!,---,&m)
is partially differentiable at each point in ¢(S). Then the partial derivative

621. f(€',--- &™) is also a function on ¢(S). By transforming the domain back
to S, we may define the partial derivatives of f to be % = géé op: S —R.

We write (B‘étf) to denote the value of this function at point p (the partial

derivative at point p).

When f = fop~!is C*, in other words when f(£!,---,£™) can be partially
differentiated with respect to its variables an unbounded number of times, we
call f a C*° function on S. This definition does not depend on the choice of
coordinate system ¢. The partial derivatives g I of a C*™ function f are also
Ok functions We may similarly define the higher-order partial derivatives, e.g.

2
a—?@% =& 564' These will also be C*°. As with the case of C* functions on

n _08? 0 0
R", 594 = s o holds.

Let us denote the class of C*° functions on S by F(S), or simply F. For
all f and g in F and a real number ¢, we define the sum f + g as (f + g)(p) =
f(p)+9(p), the scaling cf as (cf)(p) = cf(p), and the product f-g as (f-g)(p) =
f(p) - g(p); these functions are also members of F.

Let [¢'] and [p?] be two coordinate systems. Since the coordinate functions
& and p? are clearly C™, the partial derivatives —5— and
and they satisfy

6£i are well defined,

08 Oy 5008 _ o

where 4% is 1 if kK = i, and 0 otherwise (the Kronecker delta). In addition, for
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any C* function f, we have

o df op7 of
12: 7 35’ and (951 Z o€ 6p7' (1.3)

Note: In this book there often appear equations which contain
indices such as i, j, - - -, and are to be summed over those indices that
are both super and subscripted. For these equations we shall abbre-
viate by omitting the summation sign ) corresponding to these
indices. For example, Equations (1.2) and (1.3) above would be

written as ) ) ) )
06 0p) _ 00 087 _ .
dpi BEF 8L pk Tk
of _ocor  of _0p0f
dpi ~ OpI OV’ o0&t 0Ei opi”

We shall also abbreviate 37" | 377 | A% Bl' as A% Bl'. Hence (un-
less there is ambiguity), whenever there appears such an equation
we shall assume that there is an implicit ) (i.e., there is a summa-
tion over the relevant indices). Note therefore that A% X7 = A} X*,
for instance, is always true. This notation is known as Einstein’s
convention.

Let S and @ be manifolds with coordinate systems ¢ : S — R® and ¢ : Q —
R™. A mapping A : S — @ is said to be C™ or smooth if Yo Ao p~! is a C>®
mapping from an open subset of R™ to R™. A necessary and sufficient condition
for A to be C* is that f o A € F(S) for all f € F(Q). If a C*° mapping ) is a
bijection (i.e., one-to-one and A(S) = Q) and the inverse A~! is also C*°, then
A is called a C*° diffeomorphism from S onto Q.

1.2 Tangent vectors and tangent spaces

The tangent space T}, at a point p € S of a manifold S is intuitively the vector
space obtained by “locally linearizing” S around p. Let [£'] be some coordinate
system for S, and let e; denote the “tangent vector” which goes through point
p and is parallel to the i*" coordinate curve (coordinate axis). By the i*" coor-
dinate curve we mean the curve which is obtained by fixing the values of all ¢J
for j # i and varying only the value of £¢. The n-dimensional space spanned by
the n tangent vectors ey, - - -, e, is the tangent space T}, at point p (Figure 1.3).
Let p’ be a point “very close” to p, and let [€7] and [€ + d¢?] (where d¢° is an
infinitesimal) be the coordinates of p and p’, respectively. Then the segment
joining these two points may be described by 1? = d¢'e;, an infinitesimal vector
in Tp,.

Let us make the above concepts more precise. To do so, we must first
formally define what we mean by curves and the tangent vector of curves on a
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Figure 1.3: Tangent Space

manifold. Consider a one-to-one function v : I — S from some interval I (C R)

to S. By defining v'(t) i & ('y(t)) we may express the point ¥(t) (¢ € I) using

coordinates as ¥(t) = [y'(t),---,7"(t)]. f ¥(t) is C> for t € I, we call y a C*®
curve on S. This definition is independent of coordinate system choice.
Now, given a curve 7 and a point y(a) = p, let us consider what is meant by

the “derivative” of v at p, or alternatively the “tangent vector” (%})p = Y(a).

When S is simply an open subset of R”, or can be embedded smoothly into R’
(¢ > n), the range of v is contained within a single linear space, and hence it
suffices to consider the standard derivative
) . +h) —v(a
4(a) = lim 2@ P =7(@)

h—0 h (14

In general, however, the equation above is not meaningful. On the other hand, if
we take a C*° function f € F on S and consider the value of f (fy(t)) on the curve,
since this is a real-valued function, we may define the derivative J; t ( )) in the

usual way. Using coordinates, we have f(vy(t)) = f(7(t)) = f(y'(),---,7™(t)),
and the derivatives may be rewritten as

a L (OF) e () )
3oy = (aéi)w AR (35>w O

We call this the directional derivative of f along the curve . Let us consider
this directional derivative as an expression of the tangent vector of . In other
words, we take the operator : F — R which maps f € F to dtf(’)’(t))[g a, and

simply define the tangent vector (‘(—ll}) = 4(a) to be this operator. Then we
P

may rewrite Equation (1.5) as

i(a) = (j—j) = 4(a) (%) (16)

(%' (a) = %'yi(t)l,:a). Here ((%) is an operator which maps f ((%L,) It
P P

is possible to show that when the tangent vectors can be defined using Equa-
tion (1.4), there is a natural one-to-one correspondence between Equations (1.4)
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and (1.6). Hence the definition of tangent vectors as operators may be viewed
as a generalization of Equation (1.4).

Since a partial derivative is simply a directional derivative along a coordinate

axis, the operator <a%i> is the tangent vector at point p of the it" coordinate
P

curve. The e; mentioned previously corresponds to this (a%i) . From Equa-
P

tion (1.3), we see that

(), (9),6), = (2),-(), ), o

Consider all curves which pass through the point p. We denote the set
of all tangent vectors corresponding to these curves by T, or T,(S). From
Equation (1.6), we see that

Tl5) = { (ai)

This forms a linear space, and since the operators {( 6%,.) i=1,--- ’n} are
p

[c!,---,c" eR"}. (1.8)

clearly linearly independent, the dimension of this space is n (= dim S). We
call T,,(S) and its elements the tangent space and tangent vectors, of S at

the point p , respectively. In addition, we call (5‘27) the natural basis of the
P

coordinate system [£'].
Let D € T, be some tangent vector. Then for all f,g € F and all a,b € R,
D satisfies the following:

[Linearity] D(af + bg) = aD(f) + bD(g). (1.9)
[Leibniz’s rule]  D(f - g) = f(p)D(g) + g(p)D(f). (1.10)

Conversely, it can be shown that any operator D : F — R satisfying these
properties is an element of 7). Hence, it is possible to define tangent vectors in
terms of these properties.

Let A : S — @ be a smooth mapping from a manifold S to another manifold
Q. Given a tangent vector D € T,(S) of S, the mapping D' : F(Q) — R
defined by D'(f) = D(f o \) satisfies Equations (1.9) (1.10) with p replaced
with A(p), and hence D’ belongs to T,)(Q). Representing this correspondence
as D' = (d)),(D), we may define a linear mapping (d\), : T,,(S) — Th»(Q),
which is called the differential of A at p. When S and @ are provided with
coordinate systems [£'] and [p’] respectively, we have

()~ (%), (5),, o

Moreover, for any curve ¥(t) on S passing through the point p it follows that

(dA)p((‘i—Z)p) = (d“dj i )Mm- (1.12)




