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Colloidal Quantum Dots: Synthesis,

Photophysical Properties, and
Biofunctionalization Strategies

1.1

Kimihiro Susumu, Igor L. Medintz, and Hedi Mattoussi

Introduction

Fluorescence tagging of biological molecules is a commonly used approach in bio-
technology that has relied on conventional organic fluorophores and fluorescent
proteins [1-3]. All available organic fluorophores and fluorescent proteins, how-
ever, have some inherent limitations that reduce their effective use to develop bio-
logical sensing and imaging. Among these, the most limiting properties are narrow
excitation spectral windows, broad photoluminescence (PL) spectra, and low resis-
tance to chemical and photo-degradation [4, 5]. Luminescent semiconductor
nanocrystals—often referred to as quantum dots (QDs), such as those made of CdSe
and PbSe cores—in comparison offer several unique properties and promise signifi-
cant advantages in certain bioanalytical and imaging applications [4-8]. Because
they have broad absorption envelopes, extending from the ultraviolet (UV) to the
band edge, it is possible to simultaneously excite QDs of different emission colors at
a single wavelength, making them suitable for multiplexing applications. This
promising feature is very difficult to achieve with conventional organic
fluorophores. Depending on the materials used, QDs can emit light over a wide
range of wavelengths from the visible to near infrared (NIR) regions of the optical
spectrum [4, 5, 9-15]. Since the first reports on the use of QD in biology were pub-
lished, there have been several demonstrations showing that QDs conjugated with
biomolecular receptors (including peptides, proteins, and DNA) can be used in a
range of biological applications, such as sensing, imaging, and diagnostics. How-
ever, successful integration of QDs in biotechnology necessitates a thorough
understanding of the nanocrystals, namely their reproducible synthetic routes,
surface treatment/functionalization, and biocompatibility.

In this chapter, we provide an overview of the most commonly used synthetic
schemes to make colloidal nanocrystals, along with their photophysical and struc-
tural characterization. We will then describe some of the most effective schemes
reported to date to promote water solubility of these nanocrystals and discuss the
simplest conjugation techniques that can be reproducibly applied to colloidal QDs.
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1.2 Chemistry and Physics of Semiconductor Quantum Dots

1.2.1 Basic Physical Properties of Semiconductor Quantum Dots

Semiconductor nanocrystals (or QDs) are small crystalline assemblies of a given
material consisting of a few hundred to several thousand atoms. Their sizes range
anywhere from 10A to 1,000A in radius; the exact range depends on the constituent
elements used to make the nanocrystals. They can be divided into two main sub-
groups: (a) Self-assembled QDs are usually grown in vacuum via molecular beam
epitaxy or other lithography techniques; these tend to be anisotropic in shape, “pan-
cake like,” and overall larger at least within the 2-D plane (see Figure 1.1) [10, 16].
(b) Solution grown nanocrystals are colloidal in nature, and they can be spherical
with a radius of 10 ~ 2004, as well as cubic, rod-like, triangular, and so on (see Fig-
ure 1.1) [17]. Their colloidal feature stems from the fact that they are surface-capped
with organic ligands that promote their dispersion in the solution environment.

These nanoscale assemblies are neither wholly atomic nor bulk semiconductors.
Instead, they exhibit novel electronic properties attributed to what is commonly
referred to as quantum confinement effects: this is the spatial confinement of intrin-
sic electron and hole carriers to the physical dimensions of the nanocrystal material
rather than to bulk length scales. Because they somewhat combine properties that
are both bulk-like and atomic-like, they have often been described as “artificial
atoms.” These confinement effects manifest when the nanocrystal size becomes
comparable to, or smaller than, the bulk Bohr exciton radius [10, 18, 19]. One of the
best-known and -understood confinement effects is the widening of the energy band
gap with decrease of nanocrystal size. This manifests itself as a blue shift of the first
absorption peak and the photoluminescence maximum with decreasing particle size,
along with the appearance of discrete energy states in both the valence and conduc-
tion bands (Figure 1.1). However, resolution in the excited state energy levels and
separation between the valence and conduction band levels depends on the type of
semiconducting materials used.
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Figure 1.1 (a) Schematic representation of two QDs, a self-assembled “pancake” nanocrystal
(top) and a colloidal nanocrystal (bottom). (b) Representation of the discrete energy levels
expected and observed for a nanocrystal, due to quantum confinement effects.
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This phenomenon can be understood by a simple extension or adaptation of the
expected behavior of a quantum mechanical particle confined in a one-dimensional
box of length L to a three-dimensional box (or sphere) of radius a,, where the poten-
tial minimum represents the QD and the barrier to escape originates from the
abrupt termination of the semiconducting material at the QD surface (boundary
conditions) [10, 18, 19]. In this model/description, a carrier is localized within a
potential minimum between two infinite barriers. For a one-dimensional box,
effects of carrier confinement manifest in quantization of the carrier energies to dis-
crete values that exhibit inverse square dependence on the length of the box (E,, o
n*IL*, with n=1,2,3,...).

For a spherical QD with a radius g, treated within the conditions of an infinite
potential barrier, the electron and hole energy levels in the particle can be written
using the following expression:

Bl

2;
2m,’,7a0

e

B = (1.1)

Here 8, is the nth root of the spherical Bessel function of order / (solution obey-
ing the boundary conditions), 1, , is the effective mass of the electron (e) or hole (b),
and g, is the radius of the QD. This treatment predicts discrete (quantized) elec-
tron-hole (exciton) transitions, along with an increase in the effective band gap
energy (or HOMO-LUMO transition) with decreasing particle size, which can also
be expressed as:

2. 2
E,(QD) = E, (bluk) + -7
e,haO

(1.2)

Conversely, (1.1) and (1.2) also predict a decrease in the energy spacing
between states with increasing nanocrystal size. It should be noted that the physical
behavior of these nanocrystals is also affected by the Coulomb interactions between
the confined carriers (these are charged). However, because this contribution/term
has a weaker dependence on size (scales as 1/a, compared to ~1/a,” shown in (1.1)),
it is small and is often treated as perturbation to the overall energy values. For the
interested readers, there are several excellent review articles on the subject pub-
lished in the past decade, including those recently assembled by Yoffe [16, 19],
Gaponenko [18], Efros [10], and Kippeny [20].

Earlier work probing the optical properties of QDs was primarily focused on
understanding the correlation between size and spectral shifts in absorption and
luminescence based on confinement effects. Today, the absorption properties of
CdSe as well as other QDs are relatively well understood with up to 10 excited
states in the absorption assigned and theoretical avoided crossings observed [22]. A
representative experimental example of absorption spectra for II-VI colloidal QDs
is shown in Figure 1.2.

There is a unique spectroscopic property registered primarily for colloidal QDs,
but rarely reported for their self-assembled nanocrystal counterparts. Bawendi and
coworkers reported in 1996 that under CW laser excitation, the emission of isolated
TOP/TOPO-capped single-particle CdSe and CdSe-ZnS QDs was not continuous.
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Figure 1.2 Representative absorption spectra for CdS, CdSe, and CdTe QDs prepared using
high-temperature solution reaction. The spectra are shown at successive time intervals of
nanocrystal growth. The shift in the position of the first absorption peak reflects an increase in the
nanocrystal size. Reproduced from [21], with permission from the American Chemical Society.

Instead, they observed that QDs underwent intermittent on/off photoluminescence,
now widely identified as the PL “blinking” of single QDs [23]. Blinking of single QD
photoluminescence has since been widely reported in a variety of conditions, includ-
ing extremely dilute dispersions in polymeric films, surface tethered nanocrystals,
and more recently cellular media [24]. In particular, there is a nonvanishing proba-
bility for a QD to enter a long dark period. The on/off intermittency in QD emission
was attributed to Auger ionization of the QD [23, 25, 26]. Despite the remarkable
progress made, this phenomenon is still not fully understood.

1.2.2 Synthesis, Characterization, and Capping Strategies
1.2.2.1  Growth of Colloidal Nanocrystals in Doped Glasses

A range of experimental techniques such as e-beam lithography, X-ray lithography,
molecular beam epitaxy (MBE), ion implantation, and growth in size-restricted
environments has been reported for making small nanocrystallites not only of semi-
conductors but also of metals; colloidal QDs are a subset of those semiconducting
nanocrystals. However, the first reported discovery of QDs by Ekimov and
Onuschenko used doped silicate glasses [27-34]. The authors showed that if a
supersaturated solution of copper and chlorine in glass was heated at high tempera-
tures, controlled precipitation of CuCl within the glass matrix could take place.
They further demonstrated that additional heating and annealing of the glass melt
systematically creates collections of nano-scale particulates of crystalline CuCl con-
taining a finite number of atoms, ranging from tens to hundreds of angstroms; the
authors initially denoted these structures as quantum droplets. Following those
remarkable demonstrations, growth of QDs made of II-VI semiconductors (e.g.,
CdS and CdSe) in glass was achieved by doping the melt with salts of the desired
materials/precursors [27, 29, 35]. When the temperature of the glass rapidly
decreases, small nuclei of the semiconductor are generated. Following heat treat-
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ment over temperatures ranging from 400 to 1,000 degrees C, nucleation and
growth culminate in the formation of small spherical crystalline particles of semi-
conductor dispersed in the amorphous glass matrices. This technique provided
highly crystalline nanoparticles in glass host samples that can support very large (a
few hundred angstroms) QDs. However, because the QDs remain trapped within a
solid glass matrix, these nanocrystals cannot be easily manipulated to alter surface
chemistry or improve their size distribution.

1.2.2.2  Synthetic Routes of Dispersible and Highly Luminescent QDs

Solution-phase growth of semiconductor nanoparticles carried out within inverse
micelles was demonstrated shortly after the first realization of carrier confinements
in semiconductor crystallites using doped silicate glasses by Ekimov and coworkers
[28-31, 36-38]. This “wet chemistry” route allows preparation of functionalized,
and thus dispersible, nanocrystals, by essentially exploiting the natural geometrical
structures created by water-in-oil mixtures upon adding an amphiphilic surfactant
such as sodium dioctyl sulfosuccinate (AOT), cetyltrimethylammonium bromide
(CTAB), and tetraoctylammonium bromide (TOAB) (see schematics in Figure 1.3).
This route was in fact demonstrated for a variety of other inorganic nanoparticles.
In this technique, one can vary the water content of the mixture to control the size of
the water droplets (nanoscale reaction pools) suspended in the oil phase. Addition
of appropriate metal salts to the solution, which naturally migrate to the water
pools, initiates nucleation and growth of colloidal nanocrystals. This technique has
a few advantages including the fact that the reactions are carried out at room tem-
perature. Furthermore, it provides one the unique ability to perform postsynthesis
processing of these materials from solutions. This approach, however, was not able
to provide QDs that have good crystalline structure and high photoluminescence
quantum yields necessary for potential transition to technological use.

A major breakthrough took place in 1993, when Bawendi and coworkers
showed that high quality nanocrystals of CdSe QDs with crystalline cores, narrow
size distribution (~10 percent), and relatively high quantum yields can be prepared
using an organometallic synthesis based on the “pyrolysis” of metal-organic precur-
sors [9, 39]. This rationale was confirmed shortly thereafter by other groups includ-
ing Alivistaos and coworkers [40]. This reaction scheme initially employed

AOT

CdCl; + H,S
Water/Isooctane

at room temperature

Figure 1.3 Schematic representation of the growth of CdS semiconductor nanocrystals in inverse
micelles. Other materials such as CdSe and CdTe have also been prepared using the inverse
micelles approach.
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dimethylcadmium (CdMe,) and trioctylphosphine selenide (TOP:Se), diluted in
trioctylphosphine (TOP), and their rapid injection into a hot (280-300 degrees C)
coordinating solution of trioctylphosphine oxide (TOPO) (see schematics in Figure
1.4) [39]. They also demonstrated that size distribution can be further improved by
postreaction processing. Following this breakthrough, colloidal QDs could be made
with quantum yields (QYs) on the order of § to 10 percent at room temperature,
making fluorescence-based studies of QDs viable and raising the potential for use in
technological applications. The QYs of these nanocrystals can reach near unity at
low temperature.

Subsequently, Peng and coworkers further refined the reaction scheme and
showed that additional precursors that are less volatile and less pyrophoric than
CdMe, could effectively be employed to prepare high-quality colloidal nanocrystals
[21, 43]. In those studies, they and other groups have eventually outlined the impor-
tance of impurities—usually acids coordinating to the metal precursors, such as
hexylphosphonic acid (HPA) and tetradecylphosphonic acid (TDPA)—in the reac-
tion progress, and showed that these impurities can be externally controlled. They
also applied this rationale to making other types of colloidal nanocrystals, including
CdTe and CdS as well as Pb-based QDs. In this route, high purity TOPO and con-
trolled amounts of metal coordinating ligands and metal precursors such as CdO,
cadmium acetate (Cd(OAc),), and cadmium acetylacetonate (Cd(acac),) were used
for preparing Cd-based nanocrystals. The high temperature synthetic route was
extended to making near-IR emitting QDs by Murray and coworkers (and further
confirmed by other groups), using oleic acid and Lead(Il) acetate trihydrate or lead
oxide for PbSe QDs [14, 44, 45]. In most reported methods the selenium precursor
still relies on TOP:Se [14, 21, 43, 46, 47].

TOPO
Cy6H33NH,
HDDO
Cd(acac), + TOP: Se
Alternative Cadmium Precursors: 340~350°C
Cd(acetate )
CdoO
Cd(Clo,),
ZnEt, + TMS,S
TOP / TOPO
140~180 °C

Figure 1.4 (top) Schematic depiction of the high-temperature organometallic reaction and
growth method used for colloidal CdSe nanocrystals. (bottom) Reaction scheme for the
overcoating CdSe quantum dots with ZnS using the same high-temperature solution route. Addi-
tional details can be found in [41, 42].
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In these high-temperature reaction schemes, it has been demonstrated that
applying size selective precipitation using polar solvents such as methanol or etha-
nol following nanocrystal growth could reduce the particle size distribu-
tion/polydispersity of the nanocrystals. In addition to reducing polydispersity, this
procedure also removes impurities and precipitated metals from the reaction solu-
tion [9, 39]. This cleaning step is crucial for nanocrystals made using less reactive
precursors and the various metal-coordinating molecules, since larger amounts of
unreacted metals, acids, and amines can be left in the final QD crude samples. Avail-
able techniques to characterize nanocrystals include high- and low-resolution trans-
mission electron microscopy (TEM), wide angle X-ray diffraction (XRD), small
angle X-ray scattering (SAXS), and absorption and fluorescence spectroscopy,
which extract information such as size, distribution width, crystal structure, band
edge value and emission energy level (see Figures 1.5 and 1.6 and Table 1.1) [9, 11,
21, 39, 41-43, 46-50]. TEM tends to provide slightly smaller values for the inor-
ganic core than SAXS, for example, because TEM does not take into account the
amorphous outermost atomic layer on the nanocrystal surface [51].

Additional details on the synthetic routes, structural characterization, physics
of quantum confinements effects, and their implications on the electronic and spec-
troscopic properties of colloidal QDs can be found in these thorough reviews [17,
52]. A summary of the reported synthetic methods for making colloidal QDs is pro-
vided in Table 1.2, with particular emphasis on preparations yielding colloidal QDs

@ CdSe/Te CdHgTe Alloys
* CdTe ! PbSe /Te >
CdSe k% PbS >
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M 7 (nm)
CdS
H b
Z/nSe ®)
H c
Zns 3
o
Q
38
<
Iv]
; sl
o
3
&
=
3

480 520 560 600 640 680 720
Wavelength (nm)

Figure 1.5 (a) Representative set of emission spectral windows for several types of QD materials.
Core materials of 1I-VI, llI-V and hybrid “Ill-VI” are shown. Partially reproduced from [5], with per-
mission from NPG. (b) A representative example of absorption and normalized emission spectra
collected for solutions of CdSe-ZnS QDs. Partially reproduced from [4], with permission from AAS.
Other materials not represented here include InP and InAs QDs. (See Color Plate 1.)



