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Preface

Cooperative control involves a collection of decision-making components with limited
processing capabilities, locally sensed information, and limited inter-component com-
munications, all seeking to achieve a collective objective. Examples include autonomous
vehicle teams, mobile sensor networks, data network congestion control and routing, trans-
portation systems, multi-processor computing, and power systems. The distributed nature
of information processing, sensing, and actuation makes these applications a significant
departure from the traditional centralized control system paradigm.

There has been substantial and increasing interest in recent years in cooperative control
systems. Indications of the level of interest include several multi-year/multi-university
research projects, calls for proposals, journal special issues, and specialty conferences.

This volume represents an effort to recognize certain themes that have emerged from
recent cooperative control research. The themes, or ‘dimensions’, we will use are:
(1) Distributed control and computation; (2) Adversarial interactions; (3) Uncertain evo-
lution; and (4) Complexity management. Of course, these themes do not constitute a
‘partition’ of cooperative control research, and alternative headings could have been used.
Furthermore, research results typically fall under more than one dimension. Nonetheless,
it is instructive to impose some structure on the broad scope of research that has emerged
in cooperative control.

Many of the contributions in this volume were the outcome of a multi-university
collaboration between UCLA, Caltech, Cornell, and MIT sponsored by the Air Force
Office of Scientific Research, whose support is gratefully acknowledged.

Jeff S. Shamma
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