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MONG several electronic filter types, continu-
us-time filters were the first to be invented
and the last to be established in integrated form on
a massive scale. Thus, we saw digital and switched-
capacitor filters (both discrete-time types) develop
and mature in integrated form, while researchers
attempting to place continuous-time filters on chips
were still tackling severe issues related to precision,
noise, and signal swing. Nevertheless, today inte-
grated continuous-time filters are a reality, having
finally reached the stage of commercial exploitation
in such products as TVs, VCRs, disk drive electron-
ics, line equalizers for computer networks, and tele-
phony circuits, to name a few. The recent excite-
ment in industry and academia about this form of
integrated filters prompted us to assemble this
volume.

This volume is one of three on continuous-time
filters published by IEEE Press, with one volume
appearing about every ten years. The first volume,
Active Inductorless Filters, edited by S. K. Mitra in
1971, and the second, Modern Active Filter Design,
edited by R. Schaumann, M. A. Soderstrand, and
K. R. Laker in 1981, dealt almost exclusively with
“active” filters assembled from discrete components.
A large amount of work, which took place mostly
since the publication of the second volume, led to
the successful integration of continuous-time filters
and their incorporation into large integrated systems
implemented in VLSI technology. The present vol-
ume puts together key papers describing such work.

In light of the numerous high-quality papers on
many aspects of integrated continuous-time filters,
we had to make choices. To provide a concise vol-
ume, we decided to focus on papers that emphasize
real integrated implementations of complete filters.
Thus, with the exception of some studies on auto-
matic tuning, practically every paper in this volume
reports on results from fabricated chips. The very
few exceptions are papers that complete or expand
on material of other companion papers that do
report on chips. Our emphasis on complete filter
chip implementation meant that two categories of
valuable papers had to be excluded: those dealing
with network-theoretic aspects and those dealing
with the design of active elements (operational am-
plifiers and transconductors). Nevertheless, several
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issues from these two excluded categories are con-
sidered both in the papers we did include, and, of
course, in the references.

Even among the papers reporting on real chips,
the selection was difficult. We tried to include pa-
pers that describe time-enduring or promising tech-
niques, or at least contain considerations of value to
the design of successful chips. We tried to have all
major filter types represented. Still, not every high-
quality paper that met the above criteria could be
included because of space limitations, IEEE Press
editorial policy, visual appearance, reviewers’ sug-
gestions, and the need of these editors to compro-
mise with each other. We apologize to our col-
leagues whose good work could not be included.

This volume contains 64 papers and is divided into
seven parts. Part 1 is an overview of the field and
includes original material unique to this volume.
Part 2 deals with integrated filters most closely re-
sembling classic active filters, namely MOSFET-C
circuits that use operational amplifiers, capacitors,
and MOS transistors implementing resistors. Origi-
nal material is also included in Part 2. Parts 3 and 4
concentrate on filters using transconductors instead
of resistors. The filters described in Part 3 use only
transconductors and capacitors, while those in Part 4
use operational amplifiers in addition. In Part 5 we
have included papers reporting on several other
types of integrated filters, namely active R, dis-
tributed, NIC, and true active RC and passive filters
which can, in some cases, be advantageously inte-
grated. Part 6 is devoted to the study of on-chip
automatic tuning of filters and to the related subject
of adaptivity; it augments on related discussions in
many of the papers elsewhere in the volume. Finally,
the use of integrated filters is illustrated in Part 7,
which contains papers on representative applications
and application studies, including an original paper.
In all, over 15% of the pages contain original mate-
rial written specifically for this volume and not pub-
lished elsewhere.

We hope this book will be useful as a reference
for practicing engineers and researchers and as ma-
terial accompanying industrial courses on the sub-
ject. It can also serve as a companion book for
senior-year and graduate courses, supplementing a
main text on discrete-component filter design. We
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hope the volume will be a good starting point for
newcomers, some of whom will eventually make
further advances in this exciting field.

We want to thank A. van Bezooijen, N. Ramalho,
R. Schaumann, G. J. Smolka, U. Riedle, U. Greje,
B. Jahn, F. Parzefall, W. Veit, and H. Werker, who
wrote original material for this volume and
V. Gopinathan, J. Khoury, D. Rich, R. Schaumann,
E. Seevinck, K.-S. Tan, and G. Temes for their
valuable comments on the original material and on

the proposed list of publications and book format.
We also want to thank IEEE Press Executive Editor
Dudley Kay who, through all communication chan-
nels known to man (mostly electronic mail), kept
after us and helped us produce what we hope is a
concise, focused and useful book.

Y. Tsividis
J. Voorman
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IS part is an overview of integrated continu-
ous-time filters. The tutorial paper by Schau-
mann was written specifically for this volume, and
will probably be especially appreciated by newcom-
ers; it explains why integrated continuous-time fil-
ters are needed and how they are designed, gives
examples of various types of such filters, and dis-
cusses their tuning by automatic means. The next
paper, by Voorman, discusses the same issues at a
more advanced level and in much more detail. It
also has been written specifically for this volume,
and includes original material. Although this is the
longest paper in the volume, it is nevertheless dense
because of the large amount of information it con-
tains. Hence it may not be easy reading for newcom-
ers, who may want to defer reading it until they have
read other papers in the volume; this paper can then
really help put things together, in addition to provid-
ing much extra information. Useful general intro-
ductions to integrated continuous-time filters can
also be found in the beginning of other, more spe-
cialized papers in this volume.

Part 1
Overview

Although the overview papers in this part summa-
rize relevant topics from classical filter theory and
design, much more detailed discussions can be found
in textbooks (see, for example, [1-4]). An in-depth
review of classical results on active filters, covering
the period up to the early 1970s, can be found
elsewhere [5]; many of these results are, or may
become in the future, relevant in the context of fully
integrated filters.
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Paper 1-1

Continuous-Time Integrated Filters—
A Tutorial’

ROLF SCHAUMANN
DEPARTMENT OF ELECTRICAL ENGINEERING
PORTLAND STATE UNIVERSITY
P.0. BOX 751, PORTLAND, OR 97207-0751, USA

Abstract—This paper summarizes the fundamental concepts and
methods used for designing continuous-time (CT) signal-
processing circuits (i.e., filters) in fully integrated form. The
resulting filter structures can be integrated together with other
parts of the system on the same chip and are compatible with any
desired IC technology. The two main design procedures are the
promising MOSFET-C approach that is closely based on classical
active RC concepts, and the currently dominant transconduc-
tance-C method, which uses only capacitors and transconductors
for the implementation of monolithic CT filters. The critically
important problem of automatic tuning against fabrication toler-
ances and component drifts during operation is discussed in
detail.

1. INTRODUCTION

AlI;L modern communication systems and most
easuring equipment contain various types of
electrical filters that the designer has to realize in an
appropriate technology. In general, a filter is a two-
port circuit designed to process the magnitude
and /or phase of an input signal in some prescribed
way in order to generate a desired output signal. For
example, the filter may transmit (pass) the desired
frequency components in the spectrum of an input
signal with little or no change, and reject (stop) the
remaining components interfering with the signal
processing task at hand. In this sense, passbands
(PB) and stopbands (SB) can be defined as illus-
trated in Fig. 1 for a lowpass and a bandpass charac-
teristic. The literature contains many well-defined
techniques and computer programs to help the de-
signer find the appropriate transfer function that a

' The paper is a revised and updated version of [1] and was
written especially for this volume.

filter must realize to satisfy the required behavior
[2-6].

Once the filter’s transfer function is obtained,
implementation methods must be found that are
compatible with the technology selected for the de-
sign of the total system. In some situations, dictated
by such factors as power consumption, frequency
range, signal level, or production numbers, discrete
(passive or active) filter realizations may be the
appropriate choice. In many circumstances, however,
the goal will be to realize as much as possible of the
total system, fully integrated in microelectronic form,
so that naturally the question arises whether the
filters can be implemented in the same technology.

In many signal processing situations, filters must
interface with the real world where the input and
output signals take on continuous values as func-
tions of the continuous variable time; that is, they
are continuous-time (CT) signals. Because it is the
performance of the total system that is relevant and
not just that of the intrinsic filter, the designer may
have to consider whether it might not be preferable
to implement the entire system in the CT domain
rather than as a digital or sampled-data system.
Although at least at low frequencies, the latter
methods have the advantages of being able to attain
very high accuracy and little or no parameter drifts,
they entail a number of peripheral problems con-
nected with analog-to-digital (A/D) and digital-to-
analog (D/A) conversion, sample-and-hold, switch-
ing, antialiasing, and reconstruction circuitry. For
the implementation of digital and sampled-data
switched-capacitor filters, the reader is urged to
consult the literature [6-12]. In this paper, only

Reprinted from IEE Proceedings, vol. 136, Pt. G, pp. 184-190, Aug. 1989.
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those cases are considered where the signals must
be CT in nature.

2. IMPLEMENTATION METHODS

Traditionally, the implementation of CT filters has
relied on discrete designs. Well-defined procedures
exist for deriving passive LC networks or active RC
circuits from a given transfer function [2, 3, 6]. If,
however, a microelectronic realization with full inte-
gration is the goal, inductors usually are not used
because there is no practical method for realizing
high-quality inductors on an integrated circuit (IC)
chip. Thus, to realize the required complex natural
frequencies, the designer of an IC filter is forced to
use active devices. As is well known, active filters
can realize complex poles by using gain, for example,
an operational amplifier (op amp) or an operational
transconductance amplifier (OTA) embedded in an
RC feedback network [2, 3, 6, 13—18].

Consider, for example, a fully differential
transconductor whose simplified model? and the cir-
cuit symbol employed in this paper are shown in Fig.

? The linear OTA model in Fig. 2(a) is valid for signals in the
linear range of the respective electronic implementation. The
model also shows the dominant parasitics, the input and output
capacitors, and conductors c;, g, and c,, g,, respectively. Al-
though their effects and those of transconductance phase errors,
modeled as g, (jw)e/*“) [6, 19, 20, 38] are neglected in this
tutorial paper, the designer is well advised to investigate their
effects carefully when designing monolithic filters at high fre-
quencies and with large quality factors, Q,. The most troublesome
effects are that phase errors tend to increase Q, above the design
values, whereas g; and g, cause Q; to decrease.

2. Many realizations of such cells exist in CMOS [9,
18, 19-24, 26, 27, 29, 35-37, 48, 49, 57, 59], bipolar,
or in BiCMOS technologies, and even in GaAs
[20-38, 47, 51]. Because op amps and OTAs are
electronic circuits, it becomes apparent that the
problem of monolithic filter design is solved in prin-
ciple—all active devices and any necessary capaci-
tors and resistors can be integrated together on one
silicon chip. Although this conclusion is correct,
three other factors that are peculiar to integrated
CT filters and perhaps are not immediately obvious
must be addressed. The first concerns probably the
most formidable obstacle to achieving commercially
practical designs—integrated filters must be elec-
tronically tunable [6, 39]. Because of its importance,
this topic is discussed separately elsewhere in this
paper. The second factor deals with the economics
of practical implementations of active filters—in
discrete designs, the cost of acquiring and stocking
components usually necessitate designing the filter
with a minimum number of active devices, such as
one or possibly two op amps per pole pair, and using
the smallest number of different (if possible, all
identical) capacitors. In integrated realizations, ca-
pacitors are determined by processing mask dimen-
sions and the number of different capacitor values is
unimportant as long as the spread is not excessive.
Furthermore, active devices frequently occupy less
chip area than passive elements so it is often prefer-
able to use active elements. In particular, for the
problem at hand (ie., integrated CT filters), fre-
quency parameters are set by RC products or,
equivalently, by C/g,, ratios [see Equation (2a)] and
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Fig. 2. Fully differential transconductor. (a) Small-signal
model with the main parasitic components shown in dashed

form; (b) circuit symbol.

the dimensionless quality factors are determined by
ratios of like components [see Equation (2b)]. Also,
as was pointed out earlier, gain is needed to realize
complex poles. Recalling further that the function of
resistance can be obtained from transconductors®
leads to the important conclusion that capacitors
and transconductors (C — g,,) form a minimal irre-
ducible set of elements necessary for the realization
of integrated CT filters. Finally, the third factor
pertains to the fact that filters usually have to share
an integrated circuit with other, possibly switched or
digital systems, so that the AC ground lines (power
supply and ground wires) are likely to contain
switching transients and are generally noisy. Measur-
ing the analog signals relative to AC ground, there-
fore, results in designs with poor signal-to-noise
ratio and low power supply rejection. The situation
is remedied in practice by building the continuous-
time filter in fully differential, balanced form where
the signals are referred to each other as V' = V" —
V'~ as shown in Fig. 2. An additional advantage of
this arrangement is that the signal range is doubled
(for an added 6 dB of signal-to-noise ratio) and that
the even-order harmonics of the in principle nonlin-

? Note that an inverting transconductor g,, with its output
connected to its input simulates a grounded resistor of value
1/8,,- See the left OTA g,,, in Fig. 3.

ear operation of the transconductors cancel. The
examples in this paper are, therefore, drawn as fully
differential designs.

The transconductor model and the symbol in Fig.
2 are used in the circuit in Fig. 3. By writing node
equations at the nodes labeled V,, and V;, and
observing that the left transconductor g,, imple-
ments a resistor of value 1/g,,, the reader can
verify that the circuit realizes the second-order
bandpass and lowpass functions.
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Fig. 3. Second-order active g,, — C filter with lowpass and

bandpass outputs.



