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NOTE

The theorems of the Introduction have numbers
below 100, those of Chapter I begin at 101, those
of Chapter II at 201. Sections are numbered
- consecutively.



PREFACE

The Introduction and Chapter I were printed off in
1931 and some important changes should be supplied from
the Addenda and Corrigenda, which an intending reader
should take note of at once. Chapter 11, whose completion
has been unavoidably delayed, has now been rewritten.
For help in this I owe an overwhelming debt to Dr. W. W.
Rogosinski, who not only supplied much of the material,
but criticised and corrected my text in the last detail.

I wish also to express my gratitude to the printers
Messrs. C. F. Hodgson & Son for their courtesy and great
forbearance over a difficult 20 years.

June, 1944. J.E. L.
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Introduction.

THE various matters collected in the Introduction agree only in being
more conveniently separated from their applications. It is not, how-
ever, necessary to read 1t consecutively, and much of it is first required
in Volume 2 ; the reader may therefore welcome a few words of explana-
tion and advice.

He cannot become familiar too early with the inequalities of Holder
and Minkowski, and. he should ‘read consecutively (but not try to
memorize) to the*end of Section 2 if he can do so without becoming
impatient. This section is developed rather more systematically than is
necessary for applications, but the number of distinct forms in Theorems 1
:and 2 that are specifically used is surprisingly large ; and if the details are
taken with a judicious lightness the subject is quite an easy one. Sec-
tion 3 is very short. There is a certain field of complex function theory
(the problems of ‘‘boundary-values’’—these are discussed in Volume 92)
which demands a fairly complete ‘‘real-variable’’ technique. ' Sections 4
and 5 are designed to meet this need, Section 4 dealing with general
theory, and Section 5 with the more special subject of Fourier series.
While not exhaustive, the account is sufficiently systematic to be read
for its own sake, but the reader may postpone it if he wishes until he
reaches Volume 2 Section 6 is concerned with an isolated problem of
analysis situs, and may be read when it becomes relevant (in Section 19).
Section 7 presents a fairly complete general theory of harmonic func-
tions ; much of it is reqnired later, it is easy, and the subject is apt to
be neglected in England, it should proberbly be read before Chapter I.
Section 8 consists of stra:;,,htforward calculations. It sets out the be-
haviour of certa.m special finciions whose role is to be illustrative, and
especially to provide “Gegenbw‘ iiel”” ’st. It is required hardly at all
in Volume 1. ‘ :

"+ A ‘“Gegenbeispiel *’ for a proposition p is an example which shows that p is false: the
function z-! is a Gegenbeispiel”* for the proposition *‘all functions are bonnded in
0<2z<1”. The important examples are those ‘which complete the account of a theorem’ by
showing that it is ‘‘ best possible’’ (depergs on the mininum hypotheses).

B



2 .. NOTATION,

1. Notation. We use the symbol A(z, y, ...), or sometimes A, ,, ....
for a positive constant depending only on the parameters shown
explicitly ; in particular 4 will denote a positive absolute constant. We
use K for a positive constant depending in general on all the porameters
of the context. We use 9 for a number satisfying | 3|{<1. 4’s, K’s, and
9’'s are not in general the same from one occurrence to another; if we
wish to preserve their identity in the course of an argument we affect
them with suffixes 1, 2,

“e(z), ea, etc., denote functions tending to 0 as their argument tends
to the limit (finite or infinite) under consideration. The symbol o(1)
is available for such functions, and the ¢ notation is used only to mark
" a distinction; we use it for functions that are independemnt of some
parameter or parameters.

The symbol ¢ without an argument, and also §. denote as usua.l
positive constants (‘‘arbitrarily small”’). B

Jertain letters used as indices (exponents) will denote numbers sub-
ject to special conditions. u may be any real constant, positive or nega-
tive. The remaining letters denote positive constants; and oreover, are
restricted by the following irequalities :

A>0, Ex=1, r>1; 1<p<2, q>2;" 0<r<l, 0<p<1.

We shali occasionally allow ourselves the licence of extending the
ranges of A, x, p to include 0, those of u, A, k, 7, ¢ to inclade 4 «© and
that of p to include — @ ; but in such cases we shall always indicate the
extension explicitly. [The commonest indices are A and r. p and ¢
do not occur in Vol. 1. The definitions are repeated from time to time,
ind the reader need not memorize them.]

‘We write ' =t/(t—31), where t is any one of the special indices
(supposed, however, not to have the value t =1). A dashed letter does
not necessarily belong to the class denoted by the undashed letter : thus
p’ and ¢’ are respectively of types ¢ and p, and \', ', p’ may be negative,

The relation between ¢t and t' may be expressed in two further ways,
with which the reader should make himself familiar .

S =1 @=DE—D =

The integrals with which we shall be concerned are generally ex-
tended over a bounded set of points. Such a set of points can be reduced
by a trivial transformation to lie within any given interval :” we shall
suppose niways, unless the contrary is stated (and this does sometimes
happen), that all sets E, ¢, ... are contained in the interval (—r, =),
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which we denote by E,. We write E;, ¢ E for “'E, is contained in E,’",
and denote Ey—F by CE.

By HK, the ‘‘product’’ of two sets of points H and K, we méan the
set of points common to H and K.

A function f(6) to be considered in E, is likely to bave some natural
relation to the period 2r. On balance it pays to lay down the con-
vention that ‘‘f is continuons in Ky shall include the relation
f(—=n) = f(m). In theorems about functiens not necessarily continuous
it is generally possible to alter arbitrarily the valug of the function at
a single point. In such circumstances we shall tacitly suppose that
f(—n) = f(x) and that f, defined originally in H,, exists everywhere
and has the period 2=. This convention enables us, for example, to treat
an interval |#—6,| << k on the same footing when it projects out of Eo
as when it does not. " _ ‘

Unless the contrary is statéd all given functions are supposed measur-
able : other questions of measurability are generally triviel, and we do
not discuss thern.

When | ()" is integrable in the sense of Lebesgue in a set E we
say that f belongs to the class L* in E. We write also for brevity L
in place of L' '

The ‘‘sign of 2'’, or, in symbols, sgn z, is defined to be 0 if 2 =10
and 2/ |z| otherwise. 7 denotes the conjugate of 2, 5gn z = sgn 7.

The symbol [f]y denotes f if | f|< N, and Nsgnf if |f|> N.
{Ely denotes that part of the set E for which the modulus of the variable
does not exceed N. :

By a null-set we understand a set of zero measure, by a null-function
a function that is zero except in a null-set. f= ¢, or, in words, “'f
is equivalent to qs”', means that f= ¢ except in a null-set, or that
S —¢ is a null-function.

We shall use the following abbreviations :—

p-p. (‘‘presque partout’’) for ‘‘almost everywhere’’ or ‘‘almost
always’’ (i.e. “‘except in a null-set”). [‘‘a.e.” is insufficiently vivid and
is apt to be mistaken for other things]; '

b.+w. for ‘‘bounded variation”’ and ‘‘of bounded variation’’;

a.c. for “‘absolute continuity’’ and ‘‘absolutely continuous’;

u.b.v. and u.a.c. for ‘“‘uniform(ly) b.v.”” and ‘‘uniform('y) a.c.’’;

t.v. for ‘“‘total variation’’.

By a ‘‘trigonometrical polynomial’’ we understand a finite sum of

type
e .
2 (¢n cos n@+d, sin né.
n=0



4 ’ INEQUALITIES OF HOLDER AND MINKOWSKI.

2. The inequa’lities of Hélder and Minkowski.

2.1. We suppose until further notice, unless the contrary.is stated,
that all letters denote numbers that are positive or zero. The sums with
which we deal are in general taken over an infinity . of terms, but in
our proofs we may suppose them finite, and complete the argument by
a trivial passage to the limit. There is a smgle exception to this rule :
Theorem 4 of §2.82. Here ‘‘convergence’’ is mentioned explicitly
and given a special treatment.

Hélder’s inequality is

H@H Sab < CaVrENT (r > 1),
Minkowski’s inequality is
) | (S@HB) M < S (3 D).

We first prove these results, then develop them at length, and finally
colleet everything for reference in Theorems 1 and 2.

2.9, Let U’ = Sa’, V' = Sb", W = Sab. We have.

a | b
e ab < - - g
a’ br’ . . = x" w—r’
For (?—,-‘l'—;)/ab—-t(w)—.—';?-f'—'r,
where & Tr = a”"b'_‘ll"

and differentiation shows that t(x) 1 is & minimum (for x = > 0) when 2 = 1
in which case t = 1.
It follows from 1) that if X is any posltwe constant

ab = A" ‘b<)\' +x—f b

Suraming we have

@ =

+?\“

We may suppose in (H) that U, V >0, in which case, if we choose A so
that ' ’
NU = A"V = WUV VO = UV,

(2) becomes

<QX+_{_]Z_UV’

and this is (H).



INEQUALITIES OF HOLDER AND MINKOWSKI. 5

The .inequality (M) is trivial when & =1; supposing then k>1 wo
have, by (H) ‘

1" = Z(a+bf = Z@+bla4-Z(a+ ¥ b
®) 1@+ 0)F ¥ (Zah 4 { Zla+b) HF (S0
— TI 1{(2 I)l/k+(2bl')l/l }_’

and the desired result follows.
(M) evidently extends directly (or by induction) to more than two sets
of numbers (a), (b): we have, in fact,

(4) IZ(@+d+c+.. )} L (Ea) D) ...

Results corresponding to (H) and (M) exist also with integrals in
place of sums, and in (4), where a double summation is involved, there
are also mixed forms. For the most part the proofs are substantially
the same for sums or integrals; where this is so we shall generally give
only the argument for sums; wheré it is not the integral case is the
more difficult and we consequently select it. In stating results we select
sometimes the sum, sometimes the integral form. We suppose in our
proofs that the range of integration is bounded; extensions to infinite
range are trivial when they are valid, and we do not consider them until
our final summing up. Our integrals are Liebesgue integrals. We
actually require none but elementary integrals in Volume 1, but the
subject is more easily treated in the general field, and the full results are,
in any case, required in Volume 2. .

For the ‘‘integral-integral” form of (4) the argument transforms as

_follows : The case k =1 is trivial. Supposing then k > 1 we have

e — jdy (j_fu. i dr)k = jde Hf ([fdx)k—ldyl
o cfelfra] T ] = e e

. ()"

which is the desired result.

2.3. Let now f and g be functions, possibly complex, for which
g = 0. Then ‘

1 Il

‘ * ] ™ N\ e 7 " . 1/r
o LI o] <l e (o) = i

This is, in fact, what may be called the “mean’’ form of (H) (for
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. integrals). The 2r's may be retained or omitted at our pleasure, since
they occur to the same power —1 on both sides. We prove now that
the sign of equality in (1) holdst if and only if each of

(2) |fIr=clg|”, where ¢ = M7(f)/M](g),
and
{& sgnfg=e“=c|g|”, where a is a real constant,

hold in the set of # for which f % 0.

It is easily seen that equality does hold in (1) subject to (2) and (3).
Suppose now that equality holds. Then. in the first place, it continges
to hold when the integrand- fg is replaced by | f]]g|. Let A"+ = oL
Then (indeed for any A)

@ folex Ll arlel

and equality in (4) happens only if | f|"=c¢|g¢|". If (2) is false there
exists a set, not null, in which (4) holds with inequality, and therefore
a non-null set in which the difference of the two sides exceeds some
positive 8 ;. Then '

c i< X a2 [1g1ra.

Since in any case

AT B
- |, lairae,

+ The reader will find in Vol. 2 that the conditions for 3quality (here and in 52 76) can
be important weapons of argument: it is a mistake to suppose that they are of purely
academic interest. ' )

1 We shall often have to use the principle involved here, which is that if ¢(8) > 0 in
a seb of positive measure, then, for some 3, o > 3 in a set of pesitive measure. The principle
can be generalized into the following form.

Suppose thet with every 6 of a set E of posiltive measu~e there are associated h positive
numnbers ¢,(8), ¢q(6), ..., $n(0); k fimite real numbers M,(0), Ms(6), ..., My (8); and lpontwe :
iniegers Ny (), Ny(6), ..., Ni/6). Then there aa:ssta a pesttive number a, a finite g, 1 positive
integers vy, va, ..., i1, all independent of 9, 2nd a perfect set B* of posilive measure contained in
E, such that for every 0 of K%

on(8)>a <), |M.8)|l<p (< rc), N,=wv, n <.

In fact, let H (p, g: 7y, 72, ..., 7/) be the set of 8 of I for which ¢u(8) > p ! n < &),
IMx(0) | < g (n < k), Nu=», in < 2. Every 6 of E belongs to some set H, and B = 3H, the
summation being tsken over all positive integral p, ¢, 1y, .... . Since = has a denumerable
number of terms, some H has positive messure with X, since mE € ¥md. H contains a
perfect set E* of positive measure, and this satisfies the required conditions, with

a_p'_7 M=, on =7,
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we have by addition

'l

5 lfylc19<—~J |jv|*d6+—_~2 J lgl~db

= () +5) Mep) Motg) = M) Motg),

}

contrary to hypothesis. Thus (2) must hold.
Finally, for equality in (1) we must have

5 g dd = P g | fg1db
K, Fy

j /g J(1—e~®sgn fg) d6 = 0.

“

The real part of the integrand being non-negative, we must have
Ifg 1 1—3R(¢"®sgnfg)} = 0.

Since the set in which fg = 0 is equivalent, by (2), to the set in which
S =0, we have R(¢c~"®sgn fg) =1 and so e~ ® sgn fg = 1, except when
f =0. This completes the proof. :

The case of sums is much simpler.

Consider now the case of equality in the (M) inequalitics, supposmc
everything non-negative. There is equality in all cases if k=1. If
k>1 the condition for equality in the ‘‘integral-integral’’ form is that
S, y) = F(@)G(y) p.p. in & and p.p. in y. In fact, for equality in (5)
- of §2.2 the z-integrands must be equal p.p. in @. By the (H) result

equality requires
'_'%‘ f(JI 1k) }1) == C(x)y
Irae)

D.p. in y, where c(x) is independent of y. This proves the result.
In the ““ sum-sum™ form (4) the coundition is that 0, = ca,, ¢, = ca,, ...
for all n, where ¢, ¢/, ... are positive constants.
p .

2. 4. The inequality (}) remains valid if the index 7 is replaced by a
# <1 and the sign of inequality is reversed, provided only that u =0 -
[negative values of u are permitted], Similarly (M) is true if k is
. replaced by u < 1 and the sign of inequality is reversed, provided u == 0.

To prove this let us denote the inequality (H) by I(a, b, »), and the
inequality with reversed sign by 7*. If mow u = —\ < 0 and we write
@ = a““‘*”{", b= (aB)* D Tt b, —N) is equivalent to [ («, (3,1 +A7Y,
~which is true  If x = p [0 < p < 1] and we write @ = (¢3)'/°, b = B-1I»,
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then I* (a, b, p) is equivalent to I(a, B, 1/p), which is true. Thus our
assertion about (H) is proved. In the case of (M) we have only to
carry out our former proofs, using I* in place of I

92.5. LeMMa a. Ca) > Ea* k=1
For Ca) = Z{Ca).a}l > Z{d . al.

[Tlie simplest case of the lemma 18
(1+2)* > 142* (2 > 0).]

The inequality (H) extends at once to the form

1) [Zab...| < Cla|™ ME|bmir ...,
where the r's are connected by
@ o st oy

and the a's, b’s, ... are not necessarily positive. To prove this we write
the product ab ...as af and use (H) with r = 7;. In the sum 28" we
now write 3 as b'y and use (H) with r = 75, and so on. We thus obtain

(1).
‘We observe next that (1) remains true sub]ect only to
@ - - I e R, E%}l.

In fact, let 1/r =1k, or. Z1(rk) = 1. Then, by Lemma a,
|Sab .. I . (z'a[“l[k |t|1/k)1; [H JE(‘all/k)rk l[(rk)‘lk — Tk (E‘al")”'.
The mequahty 1), sub]ect to (2) may be replaced by the ‘‘mean’’

form
1 i/r
<T (5 2lel)

in which n is the number of terms in each set of numbers (a), (b),
This inequality does not hold subject to (3). We shall call inequalities.
““homogeneous’’t when they are true equally in ‘‘sum (integral)” or
“‘mean’’ form.

We conclude this paragraph by noting some easy variants and con-
sequences of (H). The integrals are all taken over (—m, =), and f, g, ...
are not necessarily positive.

21 9d9'< jlf"qlcw)( hg.d@)kn](k}n,

——Za,b...
n

1 The homogeneity is in the range of summation or integration.
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[Trivial for k = 1, otherwise a consequence of (H ) witn f replaced
by [fg"*|, g by [91'%]

/ C\NMrsp o0 | 1
®) —-—j fanas < (5= j /77| a6) (0»~,J|gfh|de>_ e
1 LI N Mr ig o kFri ;kb_ \ 11
©) 2w§fgd6|‘< (%SU ALONCA ‘w) (5= )19 -a0)
if A1, k>1, n+k>hk‘
11,1 1.1 1 . 1
where 5 =% +7—1, == 1——]?, == 1——h—

[(For |fg|=|/*g" M. fI. g1,
% 1 IRRIL
‘g'ﬂffw < (g jlfl’“de) (k>0

This is the special case ¢ =1 of (4). The parallel form is

1k
< (L 21al¥)

(8) is not homogeneous [nor is (7)]. If we suppress the factors 1/n the
inequality - becomes false; indeed, when the a's are non-negative, it
becomes true with sign reversed, as is seen at once from Lemma a. (The
result corresponding to this in the theory of integrals has little interest.)

(M

(8) 1_1_ Sa
n

2.6. We prove next (a’s and b’s not necessarily positive) :
1) ClalrE—E[ bV < ( u|a+bi")l"‘ ClalH 4] b |** (k 1).
(2) Tlal~Z|b| < Z|a+b* < Zla|+Z| b O,

In each of (1) and (2) the left-hand inequality reduces to the right-
hand one if we replace a by a+b and b by —b. The right-hand inequality
of (1) is (M). To prove that of (2) it is enough to show that
(a+b) < a"+b~ for a, b > 0: this reduces to

(1 +rr L1tz (x>0),

which is easily verified by differentiation (since x—1 < 0)-
We can combine (1) and (2) as follows. For A > 0 let

et (0 f1 ¢ <1
{ 1/,\(>\> 1)

Then

8 Cla|)y—Clo < Cla+b)* < Claly+E|b Yy,

or, what is the same thing,

@) |SlatsMe—Elaly| < Elome
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The remaining results in this sub-section involve constant factors. V
Their value lies in application and the precise values of the constants
are without importance, We have first a result roughly equivalent in
application to (3'). '
@ |Zlatop—2ap| < 2P+ Ba@ ) a>0),
where : .

0 A1
Ry(a,b) = . :
A(C]a YR E DA E aVAE] Y1) > 1).
This is proved [in (2)] if A << 1; suppose then A > 1. The function.
1d+2)—1- 2*} (42"~
18 bounded in >0 [consider ¢ £}, 3 <2 <2, ©>2 separately],
and non-negative, by Lemma a.
Hence, writing B for A4,, we have for uon-negative a, b,
< (a4 —a* = L B@ 'b+ab* ),
< Z(a+ P —Za* L T+ B(Zar b+ Zabr ),
while finally
‘ A—lb g(za)\)h)/)\(zb,\))[,\ Eab"“ < (Zax\l/.\(sz)l --|IA_
The case a =0, b =20, is therefore disposed of. Cansider now the
general case : we have
(5) A =Zla+b]*—Z|al* < Z|b|*+ Rila, H)
~ a fortiori from the positive case. On the other hand, by the same argu-
ment,
6) —A =Z}a*|—Z|a+0b|
=Z|@+0+(=d—Z]a+b P K Z| —bd|*+ By (a+b, —b).

If A is positive (5) gives us what we want. If, on the other hand,
A 18 negative, then R, (a-+b, —b) < Ri(a, b), [since 1—1/x > 0] and
(6) gives what we want. This completes the proof.

Next we have two simpler results. For A >0

() Zla+b P K A ElaP 420,
(8) (Elatd P AN (€] E b)),
with extensions to more than two sets.

For la+b < [2Max([al, | DI* < 2¢(al +)b1)

Thus (7) is true with 4, = 2*,  Further
Zlad-b* < 2.2 Max(Elal®, Z]b{),
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and so Ela+bd M < 21 Max {(Z]a )P, E[8) "]

< 21+1/A : (2 l a l)«)l/A+(E| b IX)IIA} ,
which proves (8).
We now prove that, for A >0,

9 i Llf—fn|'\ d9—>0 as n-—> o, then Llf,.l"dﬂ—?Llfl"dG;

- (10) &f Llf—f,.}*deeo, L[f*—f,.\-* @80, then f* =f in B,
In fact, by (3)' (for integrals),
(J1aras)—(fI71a0)| < (fIfi=r1a8)=—~0

provided j'l f1*d6 is finite. If the last integral is not finite we can con-.
clude that for any fixed N

[1fa*d0 > [ILfJs 1 a0 > [ |1y 1* a6
and so jl fa]*d® — o, since the last expression tends to ® with N.

Thus (9) is true whether j | £1*d0 is finite or infinite.
It is not difficult to deduce (9) also from (4).

For (10) we have f* —f = (f,,—f)-l,—(f*— ), and 8o
(172 =71 a8 < A ]| faf 1P a8+ | fu—F* * a8}

by (7). Since the right-hand side tends to zero the left side is equal to -
zero, and the non-negative integrand is equivalent to zero.

2.7. The means M,(f).
2.71. We define, for any finite u == 0,

= (| 1rrae)”,

Qar

AL(f) = log M, (f).

For w = 4o we define M, = e*~ as the greatest number M such
that for every e | f| > M ——e in a set of positive measure, or as « if no M
exists. We call this number also Max (|f]) or the maximum of |fi:
equivalent functions have the same maximum, and for any f there exists
on equivalent f*(= [ f],), of which M is the maximurn in the ordinary
sense, Similarly we define Min| f|= M _. = ¢*~" as the least m such
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that | f|<<m+e in a set of positive measure. For a continuous f M
and m are, of course, Max| f| and Min| f| in the usual sense. Finally
we define

Ay =log My =75 ji"logff]dG.

This integral has a definite value (possibly 4+ @ or —a) unless the
integral over the pos.tive values of the integrand and that over the nega-
tive values are both infinite. In the latter case we regard A, as taking
all values from — @ to + o, and interpret statements about it in the
obvious way (e.g. A, > A, would mean A, = 4+ ®). u=0isa genuinely
exceptional suffix, buv the gloss enables us to remove those points of
difference that are merely trivial.

- We observe that

(D A () =—AQAl) (—o Lug +>),

8 result which enables us to infer propositions about negative u from
those for positive u.

2.72. We prove next :

(2) Ay—> A as p—> 4o, A,->A_, as u—> — o,
It is enough, by (1), to prove the first. If M, < + o there exists an:
f* such that
fI=Ifi<nu
and 8o M) =M< M.

On the other hand, | f|> Mm-—e in a set % of measure 8 > 0,

M

M) > [ —er]

lim M, > M,,—e, im M, > M.

. b=
Heuce M, — M,. 1f M, @ we have, for un arbitrarily iavge K,
fl> K in a set of posmve measure &,

A ( K'*) , imM,>K, limM, = .

2.73. We shov. next : A, is an increasing function of p (in the wide
sense). We have to show that A, > A, if wg>pu,. If u, >0 this
follows from § 2.5 (7) [with |f|* for f, k = ue/m;]. and (1) above then
shows that it is true also for u; << 0. (Incidentally we see that

p—>»+0



