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PREFACE

Feedforward neural networks have established themselves as an
important part of the rapidly expanding field of artificial neural net-
works. This book Nonlinear Dynamical Systems: Feedforward Neural
Network Perspectives addresses fundamental aspects and practical
applications of the subject. To the best of the authors’ knowledge,
this is the first book to be published in this area.

Chapter 1 provides an introductory treatment of the different
aspects of feedforward neural networks, thereby setting the stage for
more detailed treatment of the subject matter in the succeeding four
chapters.

Chapter 2 is concerned with classification problems and with the
related problem of approximating dynamic nonlinear input-output
maps. Attention is focused on the properties of nonlinear structures
that have the form of a dynamic preprocessing stage followed by a
memoryless nonlinear section. It is shown that an important type of
classification problem can be solved using certain simple network
structures involving linear functionals and memoryless nonlinear
elements. The chapter addresses various aspects of the problem of
approximating nonlinear input-output maps. One main result given
is a theorem showing that if the maps to be approximated satisfy
a certain “myopicity” condition, which is very often met, then they
can be uniformly approximated arbitrarily well using a structure
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viii PREFACE

consisting of a linear preprocessing stage followed by a memoryless
nonlinear network. Noncausal as well as causal maps are considered.
(Approximations for noncausal maps are of interest in connection
with image processing.) In the course of the study on which the
material of this chapter is based, some interesting unexpected side
issues arose. One such issue is discussed in an appendix where, in
connection with the study of myopic maps, attention is focused on—
and a correction is given of—a longstanding oversight concerning
the cornerstone of digital signal processing. The chapter makes use
of concepts drawn from the areas of real analysis and functional
analysis.

Chapter 3 relates to one of the major research areas in the past
15 years, which pertains to the development of robust controllers and
filters. Robust controllers and filters are intended to avert disastrous
results or mitigate worst-case performances. The H-infinity norms,
minimax errors, and risk-sensitive functionals are the main criteria
used to induce robust performance and are proven to lead to the
same robust controllers and filters for linear systems. Extending such
results to nonlinear systems by the conventional analytic approach
also has been a topic of extensive research. Dynamic programming
equations characterizing the robust controllers and filters have been
obtained. However, these equations are difficult, if not impossible, to
use to derive practically useful results. In Chapter 3, the capabilities
of neural networks to approximate functions and dynamic systems
to any accuracy with respect to risk-sensitive error specifically are
discussed. It is shown that under mild conditions, a function can be
approximated, to any desired degree of accuracy with respect to
a general risk-sensitive criterion, by a multilayer perceptron or a
radial-basis function network. It is also shown that under relatively
mild regularity conditions, dynamic systems can be approximated (or
identified) by neural networks to any desired degree of accuracy with
respect to general risk-sensitive criteria in both the series-parallel
and parallel formulations. These capabilities of neural networks for
universal risk-sensitive approximations of functions and dynamic
systems qualify neural networks as powerful vehicles in a synthetic
approach to robust processing (e.g., signal processing, communica-
tion, and control).

Chapter 4 discusses the practical issue of segmenting a time series.
In this context, we note that many of the methods for detecting
abrupt statistical changes in time series evolved in the field of sta-
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tistical quality control in the 1950s. In fact, much of the nomencla-
ture still reflects this origin. For example, in the statistics and control
literature, time-series classification is often referred to as “isolation,”
which is short for “fault isolation.” At that time, the emphasis was on
the simpler problem of detecting changes in the moment(s) of an
independent process, such as the dimension of a part coming off an
assembly line. As digital signal processing advanced in the 1970s,
the change detection methods were extended to include processes
with memory. However, such methods generally still utilized linear
models. In the 1990s, with the advent of powerful and general non-
linear modeling techniques, such as neural networks, new multiple-
model algorithms appeared for modeling nonlinear but piecewise
stationary time series. These algorithms were even able to model
switching chaotic signals but seemingly had no connection with the
prior work in quality control. Thus, the goal in Chapter 4 is twofold.
From one side, we reexamine the classical methods for modeling
piecewise stationary signals with an eye toward integration with new
nonlinear models. We then push these algorithms into the realm of
chaotic signals and examine whether they still function as before and
why. From the other side, we put many of the new algorithms into a
common framework and show their connections with the classical
theory.

Finally, Chapter 5 deals with the application of feedforward neural
networks to speech processing. A speech signal is the most funda-
mental communication medium, and it is also a typical example of
dynamic (temporal and nonstationary) and nonlinear signals, which
are usually difficult to handle in traditional system frameworks.
To alleviate such difficulty, extensive research efforts have been
expended on the application of feedforward networks to speech pro-
cessing. Specifically, Chapter 5 starts by summarizing speech-related
techniques and reviewing feedforward neural networks from the
viewpoint of fundamental design issues such as the selection of
network structures and the selection of training objective functions.
We specially feature the recent design framework called the gener-
alized probabilistic descent method in order to provide a compre-
hensive perspective about the issues involved in speech processing.
We discuss the topic of speech recognition, to which feedforward
neural networks have been most extensively applied. Other topics
are summarized in an archived form. Through considerations of
design fundamentals and application examples, the reader is enabled
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to understand the key points in the design of feedforward neural-
network-based speech processing systems, the importance of special
mechanism of shift tolerance and state transition.

The idea to write this volume came from Simon Haykin who
selected the authors.

IrRwWIN W. SANDBERG
JaMES T. Lo

CRraIG L. FANCOURT
Jose C. PRINCIPE
SHIGERU KATAGIRI
SiMoN HAYKIN

August 2000
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FEEDFORWARD
NEURAL NETWORKS:
AN INTRODUCTION

Simon Haykin

A neural network is a massively parallel distributed processor that
has a natural propensity for storing experiential knowledge and
making it available for use. It resembles the brain in two respects
(Haykin 1998):

1. Knowledge is acquired by the network through a learning
process.

2. Interconnection strengths known as synaptic weights are used
to store the knowledge.

Basically, learning is a process by which the free parameters (i.e.,
synaptic weights and bias levels) of a neural network are adapted
through a continuing process of stimulation by the environment in
which the network is embedded. The type of learning is determined
by the manner in which the parameter changes take place. In a general
sense, the learning process may be classified as follows:
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¢ Learning with a teacher, also referred to as supervised learning
e Learning without a teacher, also referred to as unsupervised
learning

1.1 SUPERVISED LEARNING

This form of learning assumes the availability of a labeled (i.e.,
ground-truthed) set of training data made up of N input—output
examples:

T = {(xhdi)}f\:]l (1.1)

where x; = input vector of ith example
d; = desired (target) response of ith example, assumed to be
scalar for convenience of presentation
N = sample size

Given the training sample 7, the requirement is to compute the free
parameters of the neural network so that the actual output y; of the
neural network due to x; is close enough to d; for all i in a statistical
sense. For example, we may use the mean-square error

Em) =+ (d - ) (12)

i=1

as the index of performance to be minimized.

1.1.1 Multilayer Perceptrons and
Back-Propagation Learning

The back-propagation algorithm has emerged as the workhorse for
the design of a special class of layered feedforward networks known
as multilayer perceptrons (MLP). As shown in Fig. 1.1, a multilayer
perceptron has an input layer of source nodes and an output layer
of neurons (i.e., computation nodes); these two layers connect the
network to the outside world. In addition to these two layers,
the multilayer perceptron usually has one or more layers of hidden
neurons, which are so called because these neurons are not directly
accessible. The hidden neurons extract important features contained
in the input data.
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Input layer Layer of Layer of
of source hidden output
nodes neurons neurons

Figure 1.1 Fully connected feedforward with one hidden layer and one
output layer.

The training of an MLP is usually accomplished by using a back-
propagation (BP) algorithm that involves two phases (Werbos 1974;
Rumelhart et al. 1986):

* Forward Phase. During this phase the free parameters of the
network are fixed, and the input signal is propagated through
the network of Fig. 1.1 layer by layer. The forward phase fin-
ishes with the computation of an error signal

e = dl‘ —Yi (1'3)

where d; is the desired response and y; is the actual output pro-
duced by the network in response to the input x,.

® Backward Phase. During this second phase, the error signal e; is
propagated through the network of Fig. 1.1 in the backward
direction, hence the name of the algorithm. It is during this phase
that adjustments are applied to the free parameters of the
network so as to minimize the error ¢, in a statistical sense.

Back-propagation learning may be implemented in one of two
basic ways, as summarized here:
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1. Sequential mode (also referred to as the on-line mode or sto-
chastic mode): In this mode of BP learning, adjustments are
made to the free parameters of the network on an example-by-
example basis. The sequential mode is best suited for pattern
classification.

2. Batch mode: In this second mode of BP learning, adjustments
are made to the free parameters of the network on an epoch-
by-epoch basis, where each epoch consists of the entire set of
training examples. The batch mode is best suited for nonlinear
regression.

The back-propagation learning algorithm is simple to implement and
computationally efficient in that its complexity is linear in the synap-
tic weights of the network. However, a major limitation of the algo-
rithm is that it does not always converge and can be excruciatingly
slow, particularly when we have to deal with a difficult learning task
that requires the use of a large network.

We may try to make back-propagation learning perform better by
invoking the following list of heuristics:

e Use neurons with antisymmetric activation functions (e.g.,
hyperbolic tangent function) in preference to nonsymmetric
activation functions (e.g., logistic function). Figure 1.2 shows
examples of these two forms of activation functions.

e Shuffle the training examples after the presentation of each
epoch; an epoch involves the presentation of the entire set of
training examples to the network.

¢ Follow an easy-to-learn example with a difficult one.

® Preprocess the input data so as to remove the mean and decor-
relate the data.

¢ Arrange for the neurons in the different layers to learn at essen-
tially the same rate. This may be attained by assigning a learn-
ing rate parameter to neurons in the last layers that is smaller
than those at the front end.

* Incorporate prior information into the network design when-
ever it is available.

One other heuristic that deserves to be mentioned relates to the
size of the training set, NV, for a pattern classification task. Given a mul-
tilayer perceptron with a total number of synaptic weights including
bias levels, denoted by W, a rule of thumb for selecting N is
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v
1.0

-1.0

o= -1.719
(a)
o(v)

Vv

0
(b)

Figure 1.2 (a0) Antisymmetric activafion function. (b) Nonsymmetric
activation function.
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N=O(K) (1.4)

€

where O denotes “the order of,” and € denotes the fraction of clas-
sification errors permitted on test data. For example, with an error
of 10% the number of training examples needed should be about 10
times the number of synaptic weights in the network.

Supposing that we have chosen a multilayer perceptron to be
trained with the back-propagation algorithm, how do we determine
when it is “best” to stop the training session? How do we select the
size of individual hidden layers of the MLP? The answers to these
important questions may be gotten though the use of a statistical
technique known as cross-validation, which proceeds as follows
(Haykin 1999):

¢ The set of training examples is split into two parts:
e Estimation subset used for training of the model
¢ Validation subset used for evaluating the model performance

¢ The network is finally tuned by using the entire set of training
examples and then tested on test data not seen before.

1.1.2 Radial-Basis Function Networks

Another popular layered feedforward network is the radial-basis
function (RBF) network which has important universal approxima-
tion properties (Park and Sandberg 1993), and whose structure is
shown in Fig. 13. RBF networks use memory-based learning for their
design. Specifically, learning is viewed as a curve-fitting problem in
high-dimensional space (Broomhead and Lowe 1989; Poggio and
Girosi 1990):

1. Learning is equivalent to finding a surface in a multidimen-
sional space that provides a best fit to the training data.

2. Generalization (i.e., response of the network to input data not
seen before) is equivalent to the use of this multidimensional
surface to interpolate the test data.

RBF networks differ from multilayer perceptrons in some funda-
mental respects:



