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CONCRETE ABSTRACT ALGEBRA

From Numbers to Grobner Bases

Concrete Abstract Algebra develops the theory of abstract algebra from num-
bers to Grobner bases, whilst taking in all the usual material of a traditional
introductory course. In addition there is a rich supply of topics such as cryptog-
raphy, factoring algorithms for integers, quadratic residues, finite fields, factor-
ing algorithms for polynomials and systems of non-linear equations. A special
feature is that Grobner bases do not appear as an isolated example. They are
fully integrated as a subject that can be taught successfully in an undergraduate
context.

Lauritzen’s approach to teaching abstract algebra is based on an extensive use
of examples, applications and exercises. The basic philosophy is that inspiring,
non-trivial, applications and examples give motivation and ease the learning
of abstract concepts. This book is built on several years of experience teach-
ing introductory abstract algebra at Aarhus, where the emphasis on concrete
examples has improved student performance significantly.
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Preface

Imagine that you have a very persistent piano teacher insisting that you study
notes and practice scales for three years before you are allowed to listen to or
play any real music. How is that going to affect your level of inspiration? Are
you going to attend every lesson with passion or practice absolutely ignited with
energy? Abstract algebra is like piano playing. You can kill your inspiration
and motivation spending years on formalism before seeing the beauty of the
subject. This book is written with the intent that every chapter should contain
some real music, matters which involve practice of the notes and scales in a
surprising and unexpected way. It is an attempt to include a lot of non-trivial and
fun topics in an introductory abstract algebra course. Having inspiring goals
makes the learning easier. The topics covered in this book are numbers, groups,
rings, polynomials and Grobner bases.

Knowledge of linear algebra and complex numbers is assumed in some
examples. However, most of the text is accessible with only basic mathematical
topics such as sets, maps, elementary logic and proofs.

Grobner bases are usually not treated at an undergraduate level. My feeling
four years ago when including this topic in the syllabus at Aarhus was one
of hesitation. | was afraid that the material would be too advanced for the
students. It turned out that the students liked the concrete nature of the material
and enjoyed the non-trivial computations with polynomials. They found it easier
than the traditional topics of groups and rings.

Unlike most treatments on Grébner bases, I have not included any imple-
mentations of algorithms in a pseudo-language. My personal experience is that
it disturbs the flow of the mathematics when teaching the basic ideas of the al-
gorithms. Once the mathematical concepts and a few examples are understood,
it is easy to extract the algorithms for implementation on a computer. In fact

X1



Xii Preface

students are very much encouraged to experiment using a computer algebra
system especially when learning about numbers and Grobner bases.

Chapter 1 is on numbers. It is mostly based on the RSA cryptosystem and the
mystery that it seems much easier to multiply numbers than to factor them. The
617-digit number on the cover of this book is a product of two prime numbers. If
you can find them you should write to RSA Labs and claim the $200, 000 prize.
Going through the first chapter you will learn basic number theory: division
with remainder, congruences, the Euclidean algorithm, the Chinese remainder
theorem, prime numbers, how prime numbers uncovered the infamous FDIV
bug in Intel’s Pentium processor, Fermat’s little theorem and how it is used to
produce 100-digit prime numbers for the modern information age, three modern
algorithms for factoring numbers much faster than by trial division, quadratic
residues and the quadratic reciprocity theorem (which will be proved in
Chapter 4).

The level of abstraction is increased in Chapter 2. Here the mathematical
object is a group. A group is defined using a composition on a set and it satisfies
three simple rules. This definition has proved extremely important and invalu-
able to modern algebra. You get a framework for many proofs and concepts
from basic number theory. We treat the basics of group theory, the symmetric
and alternating groups, how to solve the 15-puzzle using groups, actions of
groups, counting and the Sylow theorems.

In Chapter 3 we treat rings. A ring is an abelian group with multiplication
as an added composition. We touch briefly on non-commutative rings, with the
quaternions as an example. We then move on to commutative rings, Freshman’s
Dream, fields, domains, principal ideal domains, Euclidean domains and unique
factorization domains. The Fermat two-square theorem (every prime number
leaving a remainder of | when divided by 4 can be written as a sum of two
vnique squares (e. g. 13 = 3> 4+ 2?)) is a prime example in this chapter. You
will see the infinitude of prime numbers leaving a remainder of 1 when divided
by 4, further use of quadratic residues and an effective algorithm for computing
the two squares in the two-square theorem.

Polynemials form a central topic. In Chapter 4 we treat polynomials in one
variable, Here the highlights are: cyclotomic polynomials, a proof of the law of
quadratic reciprocity using only basic properties of rings of polynomials, how
to use floating point arithmetic to compute the order of specific elements in a
well known cyclic group, the ElGamal cryptosystem, the infinitude of prime
numbers congruent to | modulo a natural number > 1 and the existence and
uniqueness of finite fields, along with algorithms for factoring polynomials over
finite fields.
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In Chapter 5 polynomials in several variables and Grobner bases are treated.
Grobner bases form an exciting and relatively new branch of algebra. They are
very concrete and computational. The distance from understanding the abstract
concepts involved to computing with them is small. They provide a framework
for solving non-linear equations (used in most computer algebra systems) with
applications in many areas inside and outside algebra. In Chapter 5 you will
see term orders, the fundamental Dickson’s lemma, the division algorithm for
polynomials in several variables, the existence of Grobner bases, Hilbert’s basis
theorem, Buchberger’s S-criterion and algorithm, how to write X* + Y% as a
polynomialin X + ¥ and XY (like writing X2 + Y2 as (X + ¥)* — 2XY)using
Grobner bases and how to solve certain non-linear equations in several variables
systematically.

A few exercises are marked HOF. This indicates that they are “hall of fame”
exercises, far beyond what is required in an introductory abstract algebra course.
They usually call for an extraordinary amount of ingenuity. A student capable
of solving one of these deserves to be inducted into the hall of fame of creative
problem solvers. A hall of fame museum can be suitably maintained using a
course home page.

Suggestions for teaching a one-semester course

The book contains too much material for a one-semester course in introductory
abstract algebra. So, a selection of material must be made. A possible procedure
would be to leave out factoring algorithms from Chapter 1, quadratic reciprocity
from Chapters | and 4 and the Sylow theorems from Chapter 2. This plan would
give a one-semester course ending with Grébner bases; it would cover the usual
topics in an introductory course.

Leaving out Grobner bases completely, Chapters | through 4 would form an
in-depth traditional introductory abstract algebra course with many examples.
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1 Numbers

This chapter serves as an introduction to the modern theory of algebra through
the natural numbers 0, 1,2, .... The list of natural numbers never ends and
most of them are far beyond everyday use. Gigantic numbers of mote than 100
digits are used to protect information transmitted over the internet.

Suppose Alice has to send a message to Bob over the internet and it must be
kept secret. Alice and Bob live far apart and many intermediate computers will
see the message on its way. Alice will have to scramble (encrypt) the message
and send it, but at the same time Bob will have to know how to unscramble
(decrypt) it. How does Alice get this information through to him? She could
call and tell him. But then again someone could be listening in on their phone
call. Ts there a way out of this problem?

The answer is an amazing “yes” and it builds on a current paradox of mathe-
matics: the existence of so-called one-way functions f(X). These are functions
easy to compute given the input X. Once they are computed and only f(X) is
known, it appears to be exceedingly difficult to recover X unless some secret
information is known.

Here is an example of a one-way function. Fix a natural number N and let
f(X)y=1X 3], where [Y] denotes the remainder of ¥ after division by N. This
isafunction f : M — M,where M =1{0,1,2,...,N —1}. When N =15, f
can be tabulated as
| 2| 10 | 11 |
8 011 |

Of course we can easily find X given f(X) by using the above table. But in

| 14
| 14

Xlol1
I

5161 71869 12 |1
FO 0] 561320 3

4 3
4 | 7

—_—

general, as N grows the difficulty of finding X given f(X) seems insurmount-
able unless you know some secret information. In the above example the secret
information is that f{f(X)) = X (you can see this using the table). In a sense
we are raising a number to the third power and then scrambling things up by



2 1 Numbers

taking the remainder. So far nobody has found effective methods for finding
cube roots ix this setting. In the above example Alice sends the encrypted mes-
sage f(X) to Bob and Bob decrypts it using f. This is the basic principle
behind the RSA cryptosystem [22], which was the first cryptosystem based on
the groundbreaking idea [8] of using one-way functions (with a trapdoor).

On a more detailed level Bob computes two gigantic prime numbers (usually
100 digits or more) p and ¢ and forms N = pg. He then uses p and ¢ to com-
pute a number e (for encryption) and a number d (for decryption). He makes
the numbers N and e public so that people wishing to write secret messages
to him can use the function f(X) = [X“] for encryption, where [Y] denotes
the remainder of Y after division by N. He keeps the function g(X) = | X¢|
secret (the point being that g(f(X)) = X). In the example above we have
p=3,9g=5 N=15¢=3,d =3. One way of systematically finding the
secret decryption function g in the RSA system is to find the prime factors
p and g of N (N being available to the general public). The straightforward
method of trial division (dividing with successive primes 2, 3, 5, ...) is much
too slow. Mathematicians have tried at least since Gauss’s time (1777-1855)
to find faster methods for factoring numbers. In fact Gauss writes in ([11],
Art. 329)

The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and
modern geometers to such an extent that it would be superfluous to discuss the
problem at length. Nevertheless we must confess that all methods that have been
proposed thus far are either restricted to very special cases or are so laborious and
prolix that even for numbers that do not exceed the limits of tables constructed by
estimable men, i.e., for numbers that do not yield to artificial methods, they try the
patience of even the practiced calculator. And these methods do not apply at all to
larger numbers.

RSA Labs has put forward several factoring challenges. The hardest unsolved
challenge is called RSA-2048. This is the 2048-bit number (617 digits) N on the
cover of this book. It is known to be the product of two prime numbers p and ¢.
A computer was instructed to forget p and ¢ after forming N = pg. Given two
candidates p’ and ¢, it is easy to multiply them to see if their product equals
N. This can be done in a small fraction of a second on any modern computer.
Nevertheless, finding p and g knowing only N seems to be a painstakingly slow
process not within the limits of modern computers and algorithms. If you can
find p and g you will be able to claim the $200 000 prize by submitting your fac-
torization via http://www.rsasecurity.com/go/factorization.html. Alternatively,
you could settle for the less ambitious RSA factoring challenges presented at
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http://www.rsasecurity.com/rsalabs/challenges/factoring/numbers.html. It has
not been proved mathematically that factoring a number is a difficult problem
in a precise sense, so a fast algorithm may exist waiting to be discovered. In a
sense this would disrupt the pillars of the modern information age. The algebraic
reasoning behind the RSA cryptosystem is founded on basic results (more than
300 years old) about the natural numbers.

1.1 The natural numbers and the integers

The natural numbers [, 2, 3, ... were handed over to mankind by God (in the
words of Kronecker (1823-91)). Mankind later added the important natural
number 0. We will reserve the symbol N tor the natural numbers {0, 1,2, 3, ...}
The need for negative numbers leads us to introduce the set of integers
Z={...,~2,~1,0,1,2,...}containing the natural numbers N. We have de-
liberately cut through the red tape of formally defining N and Z here. We
will also take the addition (and subtraction) and multiplication of integers for
granted. This will be the starting point of our study of numbers.

1.1.1 Well ordering and mathematical induction

ForX,Y ¢ Zwedefine X <YifY —XeNandX < YifX#VYand X <7Y.
This leads to the usual way of ordering the integets,

3« 2<—-1<0<l<2<3<-..

An element s in a subset S C 7 is said to be a first element in S if s < x for
every x € §. There are many subsets of Z that do not have a first element. If a
subset of Z has a first element then the latter has to be unique (see Exercise 1.1
at the end of the chapter). The basic axiom for starting our investigation of
numbers says that every non-empty subset of N has a first element. We also
say that the set of natural numbers is well ordered.

The property that N is well ordered is equivalent to mathematical induction.
Recall that mathematical induction says that if we are given statements P(n)
for every integer i > [ such that

(1) P(1)1s true and
(it) P(n) is true implies that P(n 4 1) is true

then P(n) is true for every n > 1.
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Example 1.1.1 Let us prove the formula

nn+1)

> (1.1)

1424 4+n=
for n € N using mathematical induction. This means that we consider (1.1) as
a statement P(#n). Clearly P(1)is true, since 1 - (1 + 1) = 2. Suppose now that
P(n)is true. Then

nn+1)
1+2+~--+n+(n+1):—5—+(n+1).
The right hand side can be rewritten as
1 Iy+2 1
n(n + )+(n+1):n(n+ )+2(n+ 1)
2 2
_(m+Dn+2)
=

This is the formula for n + 1. So we have proved that P(n) implies P(n + 1).
By mathematical induction we have proved P(n) for every n > 1.

Of course, having the formal machinery for constructing a proof like this does
not necessarily provide the beauty of a really ingenious mathematical argument.
When Gauss was in school (at the age of seven) his mathematics teacher asked
the class to sum up all numbers from | to 100. The students worked furiously
with their small slates. Gauss was the first to give his slate with the number 5050
to the teacher. The teacher replied “Oh, 1 see, you probably knew the answer.”
“No, no! I just realized that

1 + 100 = 101,
2499 =101,
3498 = 101,
100+ 1 = 101.

Therefore 1 +2 4+ -+ 100 = (100 - 101)/2 = 5050, Gauss replied.

1.2 Division with remainder

Suppose that you mark all multiples of 3 on the axis of the integers:



