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Preface f

\\M’"m / i1
Global optimization is concerned with the characterization and computation of

global minima or maxima of nonlinear functions. The general constrained global

minimization problem has the following form:

Given: KcR" compact set, f :K R continuous function
Find: x*eK, f*=f (x*) such that f*<f (x) for all xeK

Such problems are widespread in mathematical modeling of real world systems .
for a very broad range of applications. Such applications include economies of
scale, fixed charges, allocation and location problems, quadratic assignment and a
number of other combinatorial optimization problems. More recently it has been ;'
shown that certain aspects of VLSI chip design and database problems can be for-
mulated as constrained global optimization problems with a quadratic objective |
function. Although standard nonlinear programming algorithms will usually obtain
a local minimum to the problem, such a local minimum will only be global when |

certain conditions are satisfied (such as f and K being convex). In general several b

local minima may exist and the corresponding function values may differ substan- )
tially. The problem of designing algorithms that obtain global solutions is very

difficult, since in general, there is no local criterion for deciding whether a local |

solution is global.

Active research during the past two decades has produced a variety of methods
for finding constrained global solutions to nonlinear optimization problems. In this |
monograph we consider deterministic methods which include those concerned with
enumerative techniques, cutting planes, branch and bound, bilinear programming, E
general approximate algorithms and large-scale approaches.

There has been a significant recent increase in research activity on the subject !
of 'constrained global optimization and related computational algorithms. This 4




'monograph summarizes much of this recent work and contains an extensive list of
references to papers on constrained global optimization, deterministic solution
methods, and applications. We hope that this work will be valuable for other
researchers in global optimization.

We wish to express our appreciation and thanks to Andrew T. Phillips and
Nainan Kovoor who carefully read an earlier version of this monograph and sug-
gested a number of valuable improvements. The authors’ research described in this
monograph was supported in part by the National Science Foundation Grant
DCR8405489.

June 1987 P.M. Pardalos, J.B. Rosen
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Chapter 1 Convex sets and functions

Convex sets and functions play a dominant role in optimization and some of
their properties are essential in the study of several algorithms. In this introductory
chapter we start with summary of some of the most important properties that we are
going to use.

1.1 Convex sets

A subset C of the Euclidean space R" is said to be convex if for every
Xy, Xo€ C and A real, 0 < A < 1, the point Ax ;[ +(1-A)x,e C.

The geometric interpretation of this definition is clear. For any two points of
C, the line segment joining these two points lies entirely in C.

m
Given the vectors xy, . . . ,x, in R" and real numbers A; > 0 with YA; =1,

i=l
the vector sum Ayx+ - - - +A, X, is called a convex combination of these points.
Some properties of convex sets are summarized in the next theorems.

Theorem 1.1.1: A subset of R” is convex iff it contains all the convex combi-
nations of its elements.

Proof: Let C be a convex set in R". If x;eC and A; 20, i=l, . .., k, such '
k k
that 3°A; = 1, prove by induction on k that the convex combination ¥ A;x;eC.

i=1 i=1
Theorem 1.1.2: Let F be a family of convex sets. Then the intersection

N _C is also a convex set.

CeF

However, it is easy to see that the union of convex sets need not be convex.
Some other algebraic set operations that preserve convexity are defined below.




Theorem 1.1.3: 1) Let C be a convex set in R” and a a real number. Then
the set aC = {x: x = ay, yeC} is also convex.
2) Let C,, C, be convex sets in R". Then the set

Ci1+Cy={x:x =x1#+xp, x1€C, x2€C5}

is also convex.

1.2 Linear and affine spaces

n
For any x,yeR" the inner product x”y is the real number > x;y;. The

i=1

n
Euclidean norm is defined to be llx Il = (3 x; 2)1’2. Other notations and terminology
i=1

not defined here are the standard ones used in the literature.

A hyperplane H in R" is a set of the form
H = (xeR": cTx =b).
for some vector ce R" and beR. Similarly we define the closed half spaces
Hy={xeR":cTx 2b)}, Hy={xeR": cTx < b}.
It is very easy to see that H, H,, H, are all convex sets.

A nonempty subset V of R" is called a (linear) subspace if the following con-
ditions are true:
i)ifx, yeV then x+yeV,
iil)if xeV and reR thenrxeV.

Next we define the structure of linear subspaces. Let S={v,, ... ,v,,} be a set

m
of vectors in V. We say that S spans V if for every vector veV, v = Y.c;v;, where
i=1

the ¢;’s are real numbers. The set S is said to be linearly independent if we cannot
find constants ¢y, . . . , ¢, not all zero such that ¢{v+ - - - +c,,v,, = O (otherwise S
is called linearly dependent).



If the set S spans V and is linearly independent we call it a basis of V. The
dimension of the subspace V, dim(V), is defined to be the number of vectors in
some basis S.

To get more insight into the geometric and algebraic nature of a subspace we
equivalently define a linear subspace to be the set

V={xeR":cjix;+ " +Cipnx, =0,i=1,...,m},

that is, V' is the solution set of the homogeneous system of linear equations Cx =0
where C is the mXxn matrix of the coefficients c¢;;. Here the dimension of V is
equal to n—rank(C) where the rank of the matrix is the maximum number of
linearly independent columns (or rows) of the matrix.

An affine subspace A of R" is a linear subspace V translated by some vector
u, thatis A = {xeR": x = u+v,veV}. Also dim(A) = dim(V). Equivalently we
can define

A= {xeR":cixi+  Hcipx, =b,i=1,...,m},
that is, A is the solution set of the (nonhomogeneous) linear system Cx = b.

From the above discussion it is clear that a hyperplane in R" is an affine sub- -
space of dimension n—1.

1.3 Convex hull

Another important concept in convexity is that of forming the smallest convex

set containing a given subset S in R". The convex hull of S is the set
Co(S)=n{C:C convexinR" and C 2 S }.
The convex hull of a finite set of points is called a convex polytope.

It is clear that a convex polytope is always bounded. A convex polytope that
contains all its boundary points is closed. A point x on the boundary of S is called
an extreme point (or vertex) if there are no distinct points x;, x,€ S such that
x = Ax+(1-A)x;, 0 <A < 1. For example in the plane a triangle has 3 extreme
points, and the sphere has all its boundary points as extreme points. The followirig
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theorem gives a very important characterization of a certain kind of convex set.

Theorem (Krein-Milman) 1.3.1: A closed, bounded convex set in R” is the
convex hull of its extreme points.

A (convex) polyhedron is the intersection of finitely many half spaces. Using
matrix notation we can define a polyhedron to be the set of points
P={xeR":Ax < b} where A is an mxn matrix and beR™. Polyhedral sets of this
form are of central importance in mathematical programming,

1.4 Convex and concave functions

If ceR", the linear function f:R" >R defined by f(x) = cTx is known as a
linear function on R".

Theorem 1.4.1: Let C be a convex polyhedron in R". Consider the linear
programming problem

min f (x) = c¢Tx. (LP)
xeC
If (LP) has a solution then it occurs at some vertex of C.
Proof: Let vy, . . ., v, be the vertices of C, and let v be the vertex such that

k k
f) = gu;lk {f (vs)}. Since for any xeC, x = 2Aivi, A 20, and YA, =1, we
‘1

i=1 i=1

k k
have that f (x) = T4, f () 2 TALf (V) = F(v).
i=1 i=1

A function f:C < R"—R, where C is a convex set, is called convex if
F x 1 +(1-M)xg) < Af (x)+HI-A)f (x5)

for any xy, x,eC and 0 < A < 1. The function f is called concave iff —f is con-
vex.



If the function f (x) has continuous second derivatives, then the following con-
ditions give necessary and sufficient conditions for convexity:

Af)2fEHVfi(x)y—x)forall x,yeC, or
b) The Hessian is positive semidefinite for all xe C.

Theorem 1.4.2: Let f;:ScR" >R be convex functions. Then
k
1) Yo,fi(x), o; 20, is also convex
i=1

2) max (f;(x)) is convex
1Si <k

3) max (0, f;(x)) is convex.
1<i<k

We are concerned here with the constrained nonlinear minimization problem of
the general form

1}122 fx) (NP)

where P is a compact convex set in R” and f (x) is a continuous function defined
onP.

A point x" eP is said to be a relative or local minimum point if f ") < fx)
for all llx—x" Il <& for some £>0. We say that x* is a global minimum point if
f&")<f(x)forall xeP.

When f (x) is convex the problem (NP) is referred to as a convex program-
ming problem, and when f (x) is nonconvex we are talking about nonconvex pro-
gramming. When the objective function f(x) is convex (or more generally
quasiconvex) then every local minimum is also global. This is no longer true for
nonconvex functions.

Theorem 1.4.3: Suppose P is a convex compact set and f:PcR"” —R is a
convex function. Then every local minimum of f over P is also global.

Proof: Let x* be a local minimum and suppose that there exists another point
y such that £ (y) < f(x). Then on the line Ay+(1-A)x” (0 < A < 1) we have

FAy+1-M)x") S A O)HI-Mf 7)< f(x7)



" contradicting the fact that x* is a local minimum.

The above theorem makes convex programming a much easier problem to
solve than the general nonlinear programming problem. Consider now the case
where f(x) is a concave function. In this case we may have many local minima
which are not global. However, this problem has the following important property
that also characterizes linear programming.

Theorem 1.4.4: Consider the problem
global min f (x)
xeP

where f (x) is a continuous concave function defined on the bounded polyhedron P.
Then every global (and local) minimum is attained at some vertex of P.

Proof: Similar to that of Theorem 1.4.1.

Note that since min f (x) = —-max (—=f (x)) minimization of a convex function
1s equivalent to maximization of a concave function(and vice versa). For continu-
ously differentiable functions convexity and local optima are characterized using the
gradient and the Hessian matrix of the function (e.g. [LUENS84], [STOE70]). For
additional details regarding different convexity results see [MANG69], [GRUN67]
and [ROCK70].

~ L.5 Convex envelopes

An important concept in nonconvex optimization is that of the convex
envelope of a function.

Definition 1.5.1: Let f:S—R be a lower semi-continuous function, where S
is a nonempty subset (of its domain) in R”. Then the convex envelope of f(x)
taken over S is a function Fg(x) such that
i) Fg(x) is convex on the convex hull Co (S )
ii) Fg(x) < f(x) for all xe S



iii) If A(x) is any convex function defined on Co(S) such that A(x) < f (x) for all
xeS, then h(x) < Fg(x) for all xeCo(S).

From this definition, the convex envelope of a function is actually the best °
convex underestimator over S. Convex envelopes were first introduced by
Kleibohm [KLEI67], who proved that with each nonconvex optimization problem is
associated a convex one whose global solution is the same as that of the original
problem. More precisely we have the following:

Theorem 1.5.1: Consider the problem
global min f (x)
xeP
where P is a convex set in R”, and assume that the global minimum occurs at
x'eP.LetF (x) be the convex envelope of f (x) over P. Then we have

: - min F
r;lelgf(x) ﬂ‘? (x)

and

{yeP:f0) = iréigf(X)} c yeP:F@)= mig F(x)}.

Proof: By definition F (x) < f (x) for all xe P. Therefore

inei?F(x) errleilr}f(x)=f(x ).

The constant function G (x) = f (x') < f(x) is a convex underestimating function.
Again by the definition of the convex envelope we have that F(x) = f (") forall x
and so

2@F@)2f@3=ggfa>

We prove the second part by contradiction. Let x* be a global minimum of
S (x) over P, and suppose that x" is not a minimum of F (x) over P. Let y' be the
minimum. Then

FOyH<FaH<fa")=f£".

Consider now the function H (x) = max(f *F (x)). Then H(x) is convex since the
maximum of two convex functions is convex. Now H(x) = F(x) for all xeP and -




