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PREFACE

This book is intended for use in undergraduate and graduate classes, and is also
appropriate for use as a reference book and for self-study. Minimal expertise in stat-
istics and mathematics is required for all except a few advanced, optional topics.
Knowledge of groundwater principles is needed to understand some parts of the
exercises and some of the examples, but students from other fields of science
have found classes based on drafts of the book to be very useful.

This book has been more than 12 years in the making. Progressively more mature
versions have been used to teach short courses most years since 1991. The short
courses have been held at the U.S. Geological Survey National Training Center in
Denver, Colorado; the International Ground Water Modeling Center at the Colorado
School of Mines in Golden, Colorado; the South Florida Water Management District
in West Palm Beach, Florida; the University of Minnesota, in Minneapolis,
Minnesota; the Delft University of Technology, The Netherlands; Charles Univer-
sity in Prague, the Czech Republic; University of the Western Cape in Belleville,
South Africa; and Utrecht University, The Netherlands. A version also was used
to teach a semester course at the University of Colorado in Boulder, Colorado in
the fall of 2000. Much of what the book has become results from our many wonder-
ful students. We thank them for their interest, enthusiasm, good humor, and encour-
agement as we struggled to develop many of the ideas presented in this book.

We also are deeply indebted to the following colleagues for insightful discus-
sions and fruitful collaborations: Richard L. Cooley, Richard M. Yager, Frank
A. D’Agnese, Claudia C. Faunt, Arlen W. Harbaugh, Edward R. Banta, Marshall
W. Gannett, and D. Matthew Ely of the U.S. Geological Survey, Eileen P. Poeter
of the Colorado School of Mines, Evan R. Anderman formerly of Calibra Consult-
ants and McDonald-Morrissey Associates, Inc., Heidi Christiansen Barlebo of the
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Geological Survey of Denmark and Greenland. John Doherty of Watermark
Numerical Computing and the University of Queensland (Australia), Karel Kovar
of MNP (The Netherlands), Steen Christensen of Aarhus University (Denmark),
Theo Olsthoorn of Amsterdam Water Supply (The Netherlands), Richard Waddel
of HSI-Geotrans, Inc., Frank Smits formerly of Witteveen + Bos, James Rumbaugh
of ESI, Inc.. Norm Jones of Utah State University, and Jeff Davis of EMS. In
addition, thought-provoking questions from users of MODFLOWP, MODFLOW-
2000, PEST, UCODE, and UCODE_2005 throughout the years have been
invaluable.

The book benefited from the careful reviews provided by Peter Kitanidis of
Stanford University, Eileen Poeter of the Colorado School of Mines and the Inter-
national GroundWater Modeling Center (USA), Steen Christensen of the University
of Aarhus (Denmark), Roseanna Neupauer of the University of Virginia (USA) (now
at the University of Colorado, USA), Luc Lebbe of Ghent University (Belgium),
David Lerner of the University of Sheffield (England), Chunmiao Zheng of the
University of Alabama (USA), and Howard Reeves and Marshall Gannett of the
U.S. Geological Survey. It also benefitted from the kind, professional editors
and copyeditor at Wiley: Jonathan Rose, Rosalyn Farkas, and Christina Della
Bartolomea.

All errors and omissions are the sole responsibility of the authors.

MAaRryY C. HiLL
CLAIRE R. TIEDEMAN
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