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1
Introduction and Outline

Mankind’s energy demand is increasing exponentially. Between 1900 and 1997, the
world’s population more than tripled and the average energy demand per human
being has also more than tripled, resulting in greater than thirteen times higher
overall global emissions [1]. Thus the carbon dioxide concentration rose from 295
parts per million in 1900 to 364 parts per million in 1997 [1]. In 1997 almost all
European countries committed to reducing greenhouse gas emissions to an amount
8% below the emissions of 1990 in the period from 2008 to 2012. With this scenario,
fuel cell technology is attracting increasing attention nowadays, because it offers the
potential to lower these emissions, owing to a potentially superior efficiency
compared with combustion engines. Fuel cells require hydrogen for their operation
and consequently numerous technologies are under investigation worldwide for the
storage of hydrogen, aimed at distribution, and mobile and portable applications.

The lack of a hydrogen infrastructure in the short term, along with the highly
attractive energy density of liquid fossil and regenerative fuels, has created wide-
spread research efforts in the field of distribution and on-board hydrogen generation
from various fuels. This complex chemical process, generally termed fuel processing,
is the subject of this book.

The electrical power output equivalent of the fuel processors that are currently
under development world wide covers a wide range, from less than a watt to several
megawatts. Portable and small scale mobile fuel cell systems promise to be the first
commercial market for fuel cells, according to a market study of Fuel Cell Todayin July
2003 [2]. According to the same report, the number of systems built has increased
dramatically to up to more than 3000 in 2003. To date, most of these systems have
used Proton Exchange Membrane (PEM) fuel cells.

Low power fuel processors (1-250 W) compete with both conventional storage
equipment, such as batteries, and simpler fuel cell systems, such as Direct Methanol
Fuel Cells (DMFC).

Fuel cell systems for residential applications are typically developed for the
generation of power and heat, which increases their overall efficiency considerably,
because even low temperature off-heat may be utilised for hot water generation,
which reduces energy losses considerably.
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1 Introduction and Outline

For mobile applications, systems designed to move a vehicle need to be distin-
guished from the Auxiliary Power Unit (APU), which either creates extra energy
for the vehicle (e.g., the air conditioning and refrigerator system of a truck) or works
as a stand alone system for the electrical power supply.

This book provides a general overview of the field of fuel processing for fuel cell
applications. Its focus is on mobile, portable and residential applications, but the
technology required for the smaller stationary scale is also discussed.

In the second chapter fundamental definitions and the basic knowledge of fuel
cell technology are provided, as far as is required to gain an insight into the interplay
between the fuel cell and its hydrogen supply unit — the fuel processor.

The third chapter deals with the reforming chemistry of conventional and
alternative fuels, and with the chemistry of catalytic carbon monoxide clean-up,
sulfur removal and catalytic combustion.

An overview of catalyst technology for fuel processing applications is provided
in Chapter 4, covering all the processes described in Chapter 3.

The design of the individual components of the fuel processor is the subject of
Chapter 5. Design concepts and numerical simulations presented in the open
literature are discussed for reforming, catalytic carbon monoxide clean-up and
physical clean-up strategies, such as membrane separation and pressure swing
adsorption. In addition, fuel processor concepts are then presented and the interplay
between the various fuel processor components is explained. Details of the basic
engineering of fuel processors and dynamic simulations are discussed, covering
start-up and control strategies. Some tips and the basic knowledge required to
perform such calculations are provided.

There are three basic types of fuel processing reactors, namely fixed catalyst
beds, monoliths and plate heat-exchangers, which are explained in Chapter 6.

Chapter 7 then shows the practical applications of such reactors, as published in
the literature.

In Chapter 8 some important aspects of balance-of-plant components are dis-
cussed, and Chapter 9 presents complete fuel processors for all types of fuels,
while cost and production issues are the subject of Chapter 10.



2
Fundamentals

This chapter provides information about common fossil fuels, necessary definitions
in the field of fuel processing and the basic knowledge from the wide field of fuel cell
technology. It is by no means comprehensive and is not a substitute for the dedicated
literature in these fields. Rather, it provides a brief summary for readers who wish to
gain an overview of the topic of fuel processing without the need to use too much
additional literature.

2.1
Common Fossil Fuels

Fuels are solid, liquid or gaseous energy carriers. To date, practically all of the fuels
available on the market are based upon fossil sources and thus contain hydrocarbons
of varying composition. However, alternative fuels such as alcohols and hydrides may
serve as future energy carriers. Table 2.1 provides an overview of the conventional
fuels and of the most important alternative fuels, which may act as future hydrogen
source for fuel cells along with their key properties.

A comparison of the gravimetric and volumetric density of various hydrogen
carriers shows that liquid hydrocarbons have — apart from borohydrides — by far the
best combined properties (see Figure 2.1).

Table 2.2 shows the maximum amount of work that can be converted into
electricity from various fuels, in theory. Compared with the gravimetric and volu-
metric energy density of 1 MJ kg~ ! or <2 MJ L™ of lithium-ion and zinc-air batteries,
these values are considerably higher.

The composition of fossil hydrocarbon fuels may vary widely depending on the
source of the crude oil that is processed in the refinery.

The composition of natural gas is predominantly methane, and also contains
several percent ethane and propane. In addition, minor amounts of butane and
higher hydrocarbons are present, plus carbon dioxide and nitrogen.

Table 2.3 shows the composition of natural gas from various sources [5]. Natural
gas also contains sulfur compounds at the ppm-level, such as hydrogen sulfide and
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Figure 2.1 Comparison of gravimetric and volumetric storage
densities as provided by Heurtaux et al. [3].

Volumic density (g H2/Iitre)

diethyl sulfide, and mercaptanes, such as ethyl mercaptane [(C,Hs)CHS] and tertiary

butyl mercaptane [(CH;);CHS].

Amongstall the fossil fuels, propane contains the highestamount of hydrogen on a
gravimetric basis, which even exceeds liquefied hydrogen, when the weight of the
storage tanks is taken into consideration [6]. Propane is usually marketed as liquefied
petroleum gas, which is a mixture of propane and butane in various ratios.

For gasoline, only approximate characterization parameters are provided, such as
the octane number, the boiling point distribution, and the saturated hydrocarbons
(alkanes), unsaturated hydrocarbons (olefins) and aromatics content. The content of

contaminants, such as sulfur, is important.

Table 2.2 Energy density of various fuels related to different properties [4].

Maximum amount of work

M)/Mol H,
Fuel M]/Mol fuel M]/Kg fuel MJ/L fuel M]/Mol C in fuel via reforming
Methanol ~ —0.69 -22 —-17¢ —0.69 -0.23
Ethanol -1.31 -28 —22° —0.65 -0.22
n-Octane —-5.23 —46 —32¢ —0.65 -0.21
Ammonia —0.33 -19 -10¢ —0.22
Methane —0.80 ~50 -39 —0.80 —0.20
Hydrogen — —0.23 ~113 —0.89* -0.23

“density of the liquid fuels calculated at 298K and 1 bar, for ammonia at 10 bar.

"density of the gaseous fuels calculated at 298K and 100 bar.
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Table 2.3 Composition of natural gas from various sources [5].

Component North Sea Qatar Netherlands Pakistan Ekofisk
CH, (Vol.%) 94.86 76.6 81.4 93.48 85.5
C,Hg (Vol.%) 3.90 12.59 2.9 0.24 8.36
C3Hg (Vol.%) 2.38 0.4 0.24 2.85
i-C4H1o (Vol.%) 0.15 0.11 0.04 0.86
n-C,Hyo (Vol.%) 0.21 0.1 0.06

Cs™ (Vol.%) 0.02 0.41 0.22
N, (Vol.%) 0.79 0.24 14.2 4.02 0.43
S (ppm) 4 1.02 1 N/A 30

Regular gasoline, at least according to German standards, is well represented by
the overall formula C;Hy, [7].

A standard jet fuel that is frequently cited is the American JP-8 fuel. It contains about
1000 ppm sulfur and up to 1.5 vol.% non-volatile hydrocarbons [8, 9]. Jet fuels widely
used in the world are Jet fuel A and A1 [10] with a boiling range between 150 and 300°C.

Diesel fuels contain mainly iso-paraffins, but also n-paraffins, mono-, di-, tri-,
tetra-cycloparaffins, alkylbenzenes, naphthalenes and phenanthrenes and even
pyrenes [11].

2.2
Basic Definitions, Calculations and Legislation

Fuel processing is the conversion of hydrocarbons, alcohol fuels and other alternative
energy carriers into hydrogen containing gas mixtures. The chemical conversion is
achieved in most instances in the gaseous phase, normally heterogeneously catalysed
in the presence of a solid catalyst and less frequently homogeneously at high
temperature without a catalyst.

The first step of the conversion procedure is generally termed reforming, and has
been well established in large scale industrial processes for many decades. The
industrial applications most commonly (about 76% [12]) use natural gas as feedstock.
The purpose of this process is the production of synthesis gas, a mixture of carbon
monoxide and hydrogen, which is then used for numerous processes in large scale
chemical production, which are not subject of this book.

Rather, the focus of this book is the technology that provides a hydrogen containing
gas mixture, termed the reformate, which is suitable for feeding into a fuel cell. The
fuel cell then converts hydrogen into electrical energy. Carbon monoxide may also be
converted, which depends on the fuel cell type (see Section 2.3.2).

The lower heating value of a chemical substance is defined as its standard enthalpy
of formation. The lower heating value of any fuel C,H,0, is easily determined by the
following formula [13]:

LHY [k mol™"] = (¥ +2x—2)198.8 4254 (2.1)



2.2 Basic Definitions, Calculations and Legislation

The performance of a fuel processor is measured by its overall efficiency, which
is commonly defined as the ratio between the Lower Heating Value (LHV) of the
hydrogen and carbon monoxide that are produced to the LHV of the fuel

consumed:
_ LHV(H,) ny, + LHV(CO) nco (2.2)
MNFuel processor — LHV(FueI) Mhuel .

n are the molar flows and the lower heating value is in units of kj mol ' The
efficiency of the reformer may be calculated by a simplified version of Eq. (2.2):

LHV(Hz)I’LHZ

_ LHV(Hm, 2.3
N Reformer LHV (Fuel)ngye -

A certain portion of the hydrogen produced by the fuel processor is frequently fed
back to it, because it is not completely consumed by the fuel cell (see Section 2.3). The
curious situation may then arise where the fuel processor efficiency exceeds 100%. In
particular, this is the situation for steam reforming, where substantially more heat is
required to run the process compared with partial oxidation and autothermal
reforming (see Section 3). A fuel processor running on steam reforming may reach
up to 120% efficiency according to the Eqs. (2.2) and (2.3).

The carbon monoxide content of the reformate obviously needs to be minimised
for low temperature proton exchange membrane fuel cells, but other fuel cells may
well utilize it as a fuel (see Section 2.3.2). The same applies for methane in certain fuel
cells. Therefore, the heating value of the hydrogen alone does not provide the
appropriate number for the calculation of efficiency in this instance.

A modified definition of the fuel processor efficiency provides a more realistic
value than Egs. (2.2) and (2.3) [14]:

LHV(H;)ny, + LHV(CO)nco + LHV(CHy)ncy,

= [LHV(Hz)nHZ + LHV(CO)HCO + LHV(CH4) nCH4]
MNEuel processor — LHV(Fuel) el

recirculated

(2.4)

In addition to the formula provided by Lutz et al. [14], it takes into consideration the
release of unconverted methane and the formation of methane by the reforming
process (see Section 3). Unconverted methane is commonly re-circulated to the fuel
processor, along with unconverted carbon monoxide, in particular for high temper-
ature fuel cells.

However, for PEM fuel cells methane and carbon monoxide could be excluded
from efficiency calculations, because they are not converted in the fuel cell.

The following definition of efficiency was proposed by Feitelberg [15]. It was
modified to also take methane and carbon monoxide fed to the fuel cell into
consideration as discussed above:

. LHV(Hz)nHZ -+ LHV(CO)YLCO + LPIV(CI’L;)]’ICH4
Ml processor = LHV(Fuel)ngpye + [LHV (H;) ny, + LHV(CO)nco (23)
+ LHV(CH,) ncy,]

recirculated
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