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Preface

A new undergraduate text in mechanics should reflect the changing
aspects of engineering. New developments have occurred in the use of
mechanics in practice, fundamental changes are occurring in engineer-
ing and mathematics education, and computational software is being
taught to students and is used in an increasing number of engineering
courses. We have not tried to revolutionize statics, but to reform the
presentation and bring the material up to date with modern practice.
Most texts currently available contain little new material, as it is felt
that no new developments have occurred. However, the practice of
mechanics has evolved, and we have incorporated this evolution into
this text. The use of computational software is now as significant a
change to introductory mechanics as were the slide rule and the calcula-
tor in earlier times.

Our presentation focuses on the conceptual understanding of mechan-
ics. This is accomplished, in part, by graphing results so that better insights
can be gained into the effects of changing parameters. Such parametric
studies are the basic foundation of engineering design, and we introduce
them early in the text. Much greater insight can be gained by having stu-
dents solve a problem for an angle or dimension and then graphing the
solution to see the effects of parametric changes. Traditional texts rely too
heavily on homework problems that specify geometry and loading and
miss the transition to design concepts. The process of design requires the
use of parametric studies to understand the importance of various para-
meters. A good mechanics book should encourage students to try “what-
if” calculations. The student’s focus needs to be on modeling, using
free-body diagrams, and then writing the equations of equilibrium.
Computational software can then be used to solve particular numerical
problems and investigate design parameters.

A computer icon (&) next to a problem number indicates those
instances where the use of a computer could benefit the student, although
a computer is not absolutely necessary to solve the problem. Two com-
puter icons (i) indicates a problem where the use of a computer is neces-
sary in order to solve the problem.

Our treatment of statics uses vector mathematics. Traditionally, for
most two-dimensional problems, the equilibrium equations are formu-



lated in scalar notation rather than vector notation. When the equilibrium
equations are written in vector notation, they may be solved directly or
expanded and solved with matrix methods taking full advantage of a vec-
tor formulation. This approach eliminates the common confusion about
linear independence.

An essential computation in statics is the solution of systems of linear
equations that result from the application of equilibrium conditions. These
systems of linear equations can now be handled by introducing a matrix
formulation. Historically, many methods in statics have been developed to
reduce the complexity of the simultaneous equations that have to be
solved. For example, students are taught to take moments about support
points, so the reactions do not appear explicitly in the equations. These
simplifications often lead to confusion. If the students are shown that sys-
tems of linear equations can be solved by using matrix methods, the num-
ber of equations becomes of minimal importance. Matrices are introduced
in Section 2.7 and matrix methods are available in all computational soft-
ware packages, as well as on some calculators. Matrix notation and matrix
methods are compatible with advanced courses in structures and mechan-
ical systems. The fundamental concepts of linear algebra are presented on
an “as needed” basis, so as not to digress from the main principles of
mechanics.

Computational software enables easy solution of systems of nonlinear
algebraic and trancendental equations. This allows consideration of equi-
librium problems where, for example, the wires supporting an object
deform. A smooth transition is provided to mechanics of materials courses
by introducing the basic concepts of springs and spring constants.
Students, therefore, gain a better understanding of the concepts of
deformable materials and static indetermancy. The ability to solve nonlin-
ear equations allows an increase in the number of applications that stu-
dents will encounter in engineering practice.

One significant change in mechanics has occurred because of advances
in computer technology. Computational software presents visualization
and solution possibilities not available previously. Students can now learn,
think, and see in both two- and three-dimensional space. Because of this,
the number of three-dimensional problems in the chapter on equilibrium
of the rigid body and the chapter on structures has been increased.
Computational software allows us to improve the type of problems and
include solutions in terms of general geometries and loadings. This is much
closer to the actual methods used in engineering practice. Students can
now focus on the free-body diagram and the equilibrium conditions. The
analytical solution of the equilibrium equations afford students good
insights and leads to discussions of design alternatives. Computational
software encourages students to examine their solutions and take correc-
tive measures. The result is students build better intuition about engineer-
ing mechanics.
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Introduction

The 984-foot-high Eiffel Tower was designed by
the French engineer Alexandre Gustave Eiffel
(1832-1923) and erected for the Paris Exposition
of 1889. Eiffel also designed the framework of
the Statue of Liberty, which is found in New
York Harbor. A miniature model of the statue
stands in the middle of the River Seine on a

1 1 Me Chanics small island near the Eiffel Tower.

Mechanics is the oldest area of study in physics, originating with the Greek
culture in 400 to 300 BC. The earliest record of the study of mechanical
problems was the work of Aristotle (384-322 BC). Although historical
questions remain as to the authorship of some of these early works, con-
siderations of the equilibrium of vertical forces and the action of levers
were evident in these writings. Archimedes of Syracuse (287-212 BC)
introduced the formal study of levers and the concept of the center of
gravity. He also examined concepts of geometry and wrote about the the-
ory of buoyancy and the equilibrium of floating bodies. Many later scien-
tists and mathematicians, including Kepler and Galileo, contributed to the
development of mechanics, but the formal presentation of the principles
of mechanics was made by Sir Isaac Newton (1642-1727).

Mechanics is a basic engineering science that lays the foundation for
machine design, structural analysis, stress analysis, vibrations, electromag-
netic field theory, and fluid and solid mechanics. In particular, these



2 CH.1 INTRODUCTION

courses use the methods of modeling, the techniques of vector algebra and
calculus, and the computational methods presented in introductory
mechanics. Mechanics is the branch of physical science that deals with
motion and the effects of forces on gases, liquids, and solid bodies. For ease
of study, mechanics has been divided into the study of deformable solid
bodies, the study of fluids and gases, and the study of rigid bodies. To fur-
ther simplify the approach, the mechanics of rigid bodies is subdivided
into statics, which deals with rigid bodies at rest or moving at a constant
velocity, and dynamics, which is the study of rigid bodies undergoing accel-
eration. Although statics may be considered a special case of dynamics, it is
helpful to study this special case first in order to obtain a firm understand-
ing of the concepts of forces and moments, learn the methods of modeling
physical situations, and become skilled at using the mathematical tools
necessary to describe these ideas.

Statics, which is based upon surprisingly few basic principles, employs a
field of mathematics called vector algebra. We will introduce another field
of mathematics, called matrix algebra, that proves useful when one is
working with common computational software. It is not necessary to use
matrix notation to solve problems in statics, but most presently available
commercial software uses this notation.

1.2 Basic Concepts

The starting point of the study of mechanics is an examination of the basic
concepts upon which Newton based his three laws of motion. These con-
cepts are as follows.

Space is a boundless expanse in which objects and events occur and
have relative position and direction. Space allows the measurement of
length, area, and volume. The measurement of length is made by compari-
son with another object of known or standard length, such as a ruler. Area
is defined as the product of two lengths and allows the measurement of a
two-dimensional space. Volume is three-dimensional space and is the
product of three lengths. Newton considered space to be infinite, homoge-
neous, isotropic, and absolute. The last property, absoluteness, allowed
Newton to assume the existence of a primary inertial frame of reference,
which is not moving relative to the “fixed” stars and has an origin located
at the center of mass of the universe. If space is isotropic, the properties of
a closed system at any point in space are unaffected by the orientation of
the system. “Homogeneous” means that the space is the same at every
point and does not change from point to point. Our present-day under-
standing of space is somewhat different from Newton’s, owing to
Einstein’s theory of relativity; however, in this book, we will assume the
same idea of space that Newton did and neglect any small deviations
owing to relativistic effects.



Time is the concept used to order the flow of events. Time is assumed
to be absolute—that is, time is the same for all observers and is indepen-
dent of all objects in the world. Physicists now consider time to be an
abstraction arrived at by changes in the physical world; in other words, the
flow of a series of events defines time, and time depends upon that flow of
events. We use Newton'’s definition of absolute time, and time is measured
by comparison with some repeatable event, such as the rotation of the
Earth, the oscillation of a pendulum, or atomic vibrations (i.e., a transition
frequency in the element cesium).

Newton defined mass as a “quantity of matter” that related an object’s
volume to its density. He stated that gravitational mass, as defined by the
law of gravitational attraction, is equivalent to inertial mass, which mea-
sures an object’s resistance to being accelerated. In current times, this
statement is called the “principle of equivalence” and is a postulate of
Einstein’s theory of relativity. In this book, we assume that the mass of a
body is independent of its motion, neglecting any relativistic effects.

Force is defined as the action of one body on another. This action may
be the result of direct contact between the two bodies, or it may arise from
gravitational, magnetic, or electrical effects between two bodies separated
by a distance. Newton postulated that forces always occur in pairs, equal
and opposite, each acting on one of the two bodies. Force is not measured
directly; only the effect a force produces can be measured. For example,
the force required to stretch a spring is measured by determining the dis-
tance the spring stretches.

Newton formulated four axioms, or laws, that are the basis of the study
of rigid-body statics and dynamics. The first three laws, known as Newton’s
laws of motion, may be stated as follows:

1. Every body or particle continues in a state of rest or of uniform motion
(constant velocity) in a straight line, unless it is compelled to change
that state by forces acting upon it. That is, the body will remain at rest
or continue to move with the same speed and direction if no net exter-
nal forces act on it.

2. The change of motion of a body is proportional to the net force
imposed on the body and is in the direction of the net force. That is, the
net force is equal to the change in the product of the mass and the
velocity. The mass is the resistance of the body to acceleration.

3. Ifone body exerts a force on a second body, then the second body exerts
a force on the first that is equal in magnitude, opposite in direction, and
collinear.

Newton’s final law is the law of universal gravitational attraction.

4. Any two particles are attracted to each other with a force whose magni-
tude is proportional to the product of their gravitational masses and
inversely proportional to the square of the distance between them. An
example of a gravitational attraction force is shown in Figure 1.1.

SEC.1.2 BASIC CONCEPTS

my

>

Figure 1.1 The gravitational
force F between two bodies of
masses m; and m, separated by a
distance r between their centers.
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4 CH.1 INTRODUCTION
The magnitude of the gravitational force F is stated mathematically as

F= ST (1.1)
3

where
G = 66.73 X 10 2 m?/kg - s*
is the universal gravitational constant.
The weight of a body on the Earth’s surface is the force due to the

gravitational attraction of an object to the mass of the Earth. Weight is
expressed as

(12)

where G is the universal gravitational constant, m is the mass of the object
(in kilograms), M is the mass of the Earth (in kilograms), and R is the
radius of the Earth (in meters). For the gravitational attraction of an
object on the surface of the Earth, the ratio

= (GM)/R?

is taken to be a constant, and the value of g is 9.807 m/s” or 32.17 ft/s’. This
value differs at different points on the Earth, as the Earth is not a perfect
sphere of radius R, and elevations vary. However, for most engineering
problems, g is considered to be a constant. The weight of an object near
the surface of the Earth is caused by the gravitational attraction and is
equal to

W = mg (1.3)

The constant g has the units of acceleration and is sometimes called the
gravitational acceleration or the acceleration due to gravity. This concept
will be discussed in detail when the subject of particle dynamics is pre-
sented. For the present, consider g to be a constant that relates the mass of
an object to its weight on the surface of the Earth.



