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Preface

The subject of fractional calculus (that is, calculus of integrals and derivatives
of any arbitrary real or complex order) has gained considerable popularity and
importance during the past three decades or so, due mainly to its demonstrated
applications in numerous seemingly diverse and widespread fields of science and
engineering. It does indeed provide several potentially useful tools for solving
differential and integral equations, and various other problems involving special
functions of mathematical physics as well as their extensions and generalizations
in one and more variables.

The concept of fractional calculus is popularly believed to have stemmed from a
question raised in the year 1695 by Marquis de L’Hépital (1661-1704) to Gottfried
Wilhelm Leibniz (1646-1716), which sought the meaning of Leibniz’s (currently
popular) notation %ﬂ- for the derivative of order n € Ny := {0,1,2,---} when
n = 3 (What if n = 1?). In his reply, dated 30 September 1695, Leibniz wrote to
L’Hopital as follows: “... This is an apparent paradox from which, one day, useful
consequences will be drawn. ...”

Subsequent mention of fractional derivatives was made, in some context or
the other, by (for example) Euler in 1730, Lagrange in 1772, Laplace in 1812,
Lacroix in 1819, Fourier in 1822, Liouville in 1832, Riemann in 1847, Greer in 1859,
Holmgren in 1865, Griinwald in 1867, Letnikov in 1868, Sonin in 1869, Laurent in
1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1917. In fact, in his 700-page
textbook, entitled “Traité du Calcul Différentiel et du Calcul Intégral” (Second
edition; Courcier, Paris, 1819), S. F. Lacroix devoted two pages (pp. 409-410) to
fractional calculus, showing eventually that

dvi T

In addition, of course, to the theories of differential, integral, and integro-differen-
tial equations, and special functions of mathematical physics as well as their exten-
sions and generalizations in one and more variables, some of the areas of present-
day applications of fractional calculus include Fluid Flow, Rheology, Dynamical
Processes in Self-Similar and Porous Structures, Diffusive Transport Akin to Diffu-
sion, Electrical Networks, Probability and Statistics, Control Theory of Dynamical
Systems, Viscoelasticity, Electrochemistry of Corrosion, Chemical Physics, Optics
and Signal Processing, and so on.
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viii Theory and Applications of Fractional Differential Equations

The first work, devoted exclusively to the subject of fractional calculus, is the
book by Oldham and Spanier [643] published in 1974. One of the most recent
works on the subject of fractional calculus is the book of Podlubny [682] pub-
lished in 1999, which deals principally with fractional differential equations. Some
of the latest (but certainly not the last) works especially on fractional models of
anomalous kinetics of complex processes are the volumes edited by Carpinteri and
Mainardi [132] in 1997 and by Hilfer [340] in 2000, and the book by Zaslavsky [915]
published in 2005. Indeed, in the meantime, numerous other works (books, edited
volumes, and conference proceedings) have also appeared. These include (for ex-
ample) the remarkably comprehensive encyclopedic-type monograph by Samko,
Kilbas and Marichev [729], which was published in Russian in 1987 and in English
in 1993, and the book devoted substantially to fractional differential equations
by Miller and Ross [603], which was published in 1993. And today there exist at
least two international journals which are devoted almost entirely to the subject of
fractional calculus: (i) Journal of Fractional Calculus and (ii) Fractional Calculus
and Applied Analysis.

The main objective of this book is to complement the contents of the other
books mentioned above. Many new results, obtained recently in the theory of or-
dinary and partial differential equations, are not specifically reflected in the book.
We aim at presenting, in a systematic manner, results including the existence
and uniqueness of solutions for the Cauchy Type and Cauchy problems involv-
ing nonlinear ordinary fractional differential equations, explicit solutions of lin-
ear differential equations and of the corresponding initial-value problems by their
reduction to Volterra integral equations and by using operational and composi-
tional methods, applications of the one- and multi-dimensional Laplace, Mellin,
and Fourier integral transforms in deriving closed-form solutions of ordinary and
partial differential equations, and a theory of the so-called sequential linear frac-
tional differential equations including a generalization of the classical Frobenius
method.

This book consists of a total of eight chapters. Chapter 1 (Preliminaries)
provides some basic definitions and properties from such topics of Mathematical
Analysis as functional spaces, special functions, integral transforms, generalized
functions, and so on. The extensive modern-day usages of such special functions
as the classical Mittag-Leffler functions and its various extensions, the Wright
(or, more precisely, the Fox-Wright) generalization of the relatively more familiar
hypergeometric ,F;, function, and the Fox H-function in the solutions of ordinary
and partial fractional differential equations have indeed motivated a major part of
Chapter 1. Chapter 2 (Fractional Integrals and Fractional Derivatives) contains
the definitions and some potentially useful properties of several different families of
fractional integrals and fractional derivatives. Chapter 1 and Chapter 2, together,
are meant to prepare the reader for the understanding of the various mathematical
tools and techniques which are developed in the later chapters of this book.

The fundamental existence and uniqueness theorems for ordinary fractional
differential equations are presented in Chapter 3 with special reference to the
Cauchy Type problems. Here, in Chapter 3, we also consider nonlinear and linear
fractional differential equations in one-dimensional and vectorial cases. Chapter
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4 is devoted to explicit and numerical solutions of fractional differential equa-
tions and boundary-value problems associated with them. Our approaches in this
chapter are based mainly upon the reduction to Volterra integral equations, upon
compositional relations, and upon operational calculus.

In Chapter 5, we investigate the applications of the Laplace, Mellin, and Fourier
integral transforms with a view to constructing explicit solutions of linear differen-
tial equations involving the Liouville, Caputo, and Riesz fractional derivatives with
constant coefficients. Chapter 6 is devoted to a survey of the developments and re-
sults in the fields of partial fractional differential equations and to the applications
of the Laplace and Fourier integral transforms in order to obtain closed-form so-
lutions of the Cauchy Type and Cauchy problems for the fractional diffusion-wave
and evolution equations.

Linear differential equations of sequential and non-sequential fractional order,
as well as systems of linear fractional differential equations associated with the
Riemann-Liouville and Caputo derivatives, are investigated in Chapter 7, which
incidentally also develops an interesting generalization of the classical Frobenius
Method for solving fractional differential equations with variable coefficients and a
direct way to obtain explicit solutions of such types of differential equations with
constant coefficients. And, while a survey of a variety of applications of fractional
differential equations are treated briefly in many chapters of this book (especially
in Chapter 7), a review of some important applications involving fractional models
is presented systematically in the last chapter of the book (Chapter 8).

At the end of this book, for the convenience of the readers interested in further
investigations on these and other closely-related topics, we include a rather large
and up-to-date Bibliography. We also include a Subject Index.

Operators of fractional integrals and fractional derivatives, which are based es-
sentially upon the familiar Cauchy-Goursat Integral Formula, were considered by
(among others) Sonin in 1869, Letnikov in 1868 onwards, and Laurent in 1884. In
recent years, many authors have demonstrated the usefulness of such types of frac-
tional calculus operators in obtaining particular solutions of numerous families of
homogeneous (as well as nonhomogeneous) linear ordinary and partial differential
equations which are associated, for example, with many of the celebrated equa-
tions of mathematical physics such as (among others) the Gauss hypergeometric
equation:

dw

z(l—z)ﬁ+[’y—(a+B+1)z]%—aﬁw=0

and the relatively more familiar Bessel equation:

w
zZ%Z—Z +z%§ + (22— vH)w =0.
In the cases of (ordinary as well as partial) differential equations of higher or-
ders, which have stemmed naturally from the Gauss hypergeometric equation, the
Bessel equation, and their many relatives and extensions, there have been several
seemingly independent attempts to present a remarkably large number of scat-
tered results in a unified manner. For developments dealing extensively with such
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applications of fractional calculus operators in the solution of ordinary and par-
tial differential equations, the interested reader is referred to the numerous recent
works cited in the Bibliography.

This book is written primarily for the graduate students and researchers in
many different disciplines in the mathematical, physical, and engineering sciences,
who are interested not only in learning about the various mathematical tools and
techniques used in the theory and widespread applications of fractional differential
equations, but also in further investigations which emerge naturally from (or which
are motivated substantially by) the physical situations modelled mathematically
in the book.

Right from the conceptualization of this book project until the finalization of
the typescript in this present form, the authors have gratefully received invaluable
suggestions and comments from colleagues at many different academic institutions
and research centers around the world. Special mention ought to be made of the
help and assistance so generously and meticulously provided by Dr. Margarita
Rivero, Dr. Blanca Bonilla, Dr. José R. Franco, Ldo. Luis Rodriguez-Germa4,
all at the Universidad de La Laguna. Special mention should be made also of
Engr. Sergio Ortiz-Villajos Eirin and of Dr. Luis Vazquez at the Universidad
Complutense de Madrid.

The first- and the second-named authors would like to express their apprecia-
tion for the kind hospitality and support by the Universidad de La Laguna during
their many short-term visits to the Departamento de Analisis Matemdtico (Univer-
sidad de La Laguna) throughout the tenure of this book project. All three authors,
and particularly the second-named author, are especially thankful to the second-
named author’s wife and colleague, Professor Rekha Srivastava, for her constant
support, encouragement, and understanding. The first-named author would also
like to thank his wife, Mrs. Tamara Sapova, for her support and encouragement.

We are immensely grateful to Professor Nacere Hayek Calil for his constant
inspiration and encouragement throughout the tenure of this book project.

Finally, the authors (particularly the third-named author) would like to thank-
fully acknowledge the financial grants and support for this book project, which
were awarded by the Ministry of Education and Sciences (MTM2004/00327),
FEDER and the Autonomous Government of Canary Islands (PI 2003/133). This
book was prepared in the frame of joint collaboration of the first- and the third-
named authors supported by Belarusian Fundamental Research Fund under Pro-
jects FO3BMC-008 and FO5MC-050. This work was also supported, in part, by the
Universidad de La Laguna, the Academia Canaria de Ciencias, and the Natural
Sciences and Engineering Research Council of Canada.

September 2005 Anatoly A. Kilbas
Belarustan State University

Hari M. Srivastava
University of Victoria

Juan J. Trujillo
Universidad de La Laguna
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Chapter 1

PRELIMINARIES

This chapter is preliminary in character and contains definitions and properties
from such topics of Analysis as functional spaces, special functions, and integral
transforms.

1.1 Spaces of Integrable, Absolutely Continuous,
and Continuous Functions

In this section we present definitions of spaces of p-integrable, absolutely contin-
uous, and continuous functions and their weighted modifications. We also give
characterizations of those modified spaces which will be used later.

Let Q@ = [a,b] (w00 £ a < b £ 00) be a finite or infinite interval of the real
axis R = (—o00,00). We denote by Ly(a,b) (1 < p < 00) the set of those Lebesgue
complex-valued measurable functions f on § for which || f||, < co, where

b 1/p
11l = ( / If(t)l”dt) (1<p <o) (L.1.1)

and
| flloc = ess sup,<,<p|f(2)]- (1.1.2)

Here ess sup| f(z)| is the essential maximum of the function | f(z)| [see, for example,
Nikol’skii [628], pp. 12-13)].

We also need the weighted LP-space with the power weight. Such a space,
which we denote by X?(a,b) (c € R; 1 £ p £ o), consists of those complex-
valued Lebesgue measurable functions f on (a,b) for which || f||x» < oo, with

b 1/p
1fllxe = ( / 1t°f<t>|"%) (1<p<oo) (113)
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and
| fllxe = ess supg<,<,[2°|f(2)]]- (1.1.4)

In particular, when ¢ = 1/p, the space X?(a,b) coincides with the L, (a, b)-space:
X7/,(a,b) = Lp(a,b).

Let now [a,b] (—00 < a < b < 00) be a finite interval and let AC[a,b] be the
space of functions f which are absolutely continuous on [a,b]. It is known [see
Kolmogorov and Fomin ([434], p. 338)] that AC|a,b] coincides with the space of
primitives of Lebesgue summable functions:

f@) € ACa Y & f@) =c+ [ ot ()€ Liat),  (119)

and therefore an absolutely continuous function f(z) has a summable derivative
f'(z) = ¢(z) almost everywhere on [a, b]. Thus (1.1.5) yields

o(t) = f'(t) and ¢ = f(a). (1.1.6)

For n € N:={1,2,3,---} we denote by AC™[a,b] the space of complex-valued
functions f(z) which have continuous derivatives up to order n — 1 on [a, b] such
that f(*~1(z) € AC[a, b]:

AC™[a,b] = {f : [a,b] = C and (D" £)(z)] € AC[a,b] (D = %)}, (1.1.7)

C being the set of complex numbers. In particular, AC'[a,b] = AC]|a, b].

This space is characterized by the following assertion [see Samko et al. ([729],
Lemma 2.4)].

Lemma 1.1 The space AC"[a,b] consists of those and only those functions f(z)
which can be represented in the form

n—1

f(@) = (I @) (@) + Y exlz — o), (1.1.8)

k=0

where p(t) € L(a,b), ¢, (k=0,1,---, n~1) are arbitrary constants, and

I20)@) = gy [ @ =0ttty (1.1.9)
It follows from (1.1.8) that
e(t) =), a= % (k=0,1,---, n—1). (1.1.10)

We also use a weighted modification of the space AC™[a,b] (n € N), in which
the usual derivative D = d/dx is replaced by the so-called §-derivative, defined by

d

§=zD (D (1.1.11)



