A.Quarteroni
L. Formaggia
A.Veneziani (Eds)

Complex Systems
in Biomedicine

Springer




R 318
ey

A. Quarteroni (Editor)
L. Formaggia (Editor)
A.Veneziani (Editor)

Complex Systems
In Biomedicine

With 88 Figures

| UMMM

E200603425

@ Springer



Alfio Quarteroni

MOX, Dipartimento di Matematica
Politecnico di Milano

Milan, Italy

and

CMCS-IACS

Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland
alfio.quarteroni@epfl.ch

Luca Formaggia

MOX, Dipartimento di Matematica
Politecnico di Milano

Milan, Italy
luca.formaggia@mate.polimi.it

Alessandro Veneziani

MOQOX, Dipartimento di Matematica
Politecnico di Milano

Milan, Italy
alessandro.veneziani@mate.polimi.it

The picture on the cover shows an integration of a synapsis (bottom right), the computational
domain for a pulmonary artery bifurcation (top right), the human heart (top left), and the wall
shear stress in a pulmonary artery (bottom left).

Library of Congress Control Number: 2006923296

ISBN-10 88-470-0394-6 Springer Milan Berlin Heidelberg New York
ISBN-13  978-88-470-0394-1 Springer Milan Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in other ways, and storage in data
banks. Duplication of this publication or parts thereof is permitted only under the provisions
of the Italian Copyright Law in its current version, and permission for use must always be
obtained from Springer. Violations are liable to prosecution under the Italian Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Italia, Milano 2006

Printed in Italy

Cover-Design: Simona Colombo, Milan
Typesetting: PTP-Berlin Protago-TeX-Production GmbH, Germany
Printing and Binding: Signum, Bollate (Mi)



Alfio Quarteroni
Luca Formaggia
Alessandro Veneziani

Complex Systems in Biomedicine



Preface

Mathematical modeling of human physiopathology is a tremendously ambitious task.
It encompasses the modeling of most diverse compartments such as the cardiovascu-
lar, respiratory, skeletal and nervous systems, as well as the mechanical and biochem-
ical interaction between blood flow and arterial walls, and electrocardiac processes
and electric conduction in biological tissues. Mathematical models can be set up to
simulate both vasculogenesis (the aggregation and organization of endothelial cells
dispersed in a given environment) and angiogenesis (the formation of new vessels
sprouting from an existing vessel) that are relevant to the formation of vascular
networks, and in particular to the description of tumor growth.

The integration of models aimed at simulating the cooperation and interrelation
of different systems is an even more difficult task. It calls for the setting up of,
for instance, interaction models for the integrated cardio-vascular system and the
interplay between the central circulation and peripheral compartments, models for
the mid-to-long range cardiovascular adjustments to pathological conditions (e.g.,
to account for surgical interventions, congenital malformations, or tumor growth),
models for integration among circulation, tissue perfusion, biochemical and thermal
regulation, models for parameter identification and sensitivity analysis to parameter
changes or data uncertainty — and many others.

The heart is a complex system in itself, where electrical phenomena are func-
tionally related to wall deformation. In its turn, electrical activity is related to heart
physiology. It involves nonlinear reaction-diffusion processes and provides the ac-
tivation stimulus to heart dynamics and eventually the blood ventricular flow that
drives the haemodynamics of the whole circulatory system. In fact, the influence
is reciprocal, since the circulatory system in turn affects heart dynamics and may
induce an overload depending upon the individual physiopathologies (for instance,
the presence of a stenotic artery or a vascular prosthesis).

Virtually all the fields of mathematics have arole to play in this context. Geometry
and approximation theory provide the tools for handling clinical data acquired by
tomography or magnetic resonance, identifying meaningful geometrical patterns and
producing three-dimensional geometric models stemming from the original patient’s
data. Mathematical analysis, fluid and solid dynamics, stochastic analysis are used
to set up the differential models and predict uncertainty. Numerical analysis and
high performance computing are needed to solve the complex differential models
numerically. Finally, methods from stochastic and statistical analysis are exploited
for the modeling and interpretation of space-time patterns.
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Indeed, the complexity of the problems at hand often stimulates the use of in-
novative mathematical techniques that are able, for instance, to capture accurately
those processes that occur at multiple scales in time and space (such as cellular and
systemic effects), and that are governed by heterogeneous physical laws.

In this book we have collected the contributions of several Italian research groups
that are successfully working in this fascinating and challenging field. Each chapter
deals with a specific subfield, with the aim of providing an overview of the subject
and an account of the most recent research results.

Chapter 1 addresses a class of inverse mathematical problems in biomedical imag-
ing. Imaging techniques (such as tomography or magnetic resonance) are a powerful
tool for the analysis of human organs and biological systems. They invariably re-
quire a mathematical model for the acquisition process and numerical methods for
the solution of the corresponding inverse problems which relate the observation to
the unknown object.

Chapter 2 addresses those biochemical processes which are composed of two
phases, generation (nucleation, branching, etc.) and subsequent growth of spatial
structures (cells, vessel networks, etc), which display , in general, a stochastic nature
both in time and space. These structures induce a random tessellation as in tumor
growth and tumor-induced angiogenesis. Predictive mathematical models which are
capable of producing quantitative morphological features of developing tumor and
blood vessels demand a quantitative description of the spatial structure of the tessel-
lation that is given in terms of the mean densities of interfaces.

A preliminary stochastic geometric model is proposed to relate the geometric
probability distribution to the kinetic parameters of birth and growth. For its numeri-
cal assessment, methods of statistical analysis are proposed for the estimation of the
geometric densities that characterize the morphology of a real system.

Chapter 3 presents a review of models of tumor growth and tumor treatment.
One family of models concerns blood vessels collapsing in vascular tumors, another
is devoted to the modeling of tumor cords (growing directly around a blood vessel),
highlighting features that are relevant in the evolution of solid tumors in the presence
of necrotic regions. Tumor cords are also taken as an example of how to deal with
certain aspects of tumor treatment.

The aim of Chapter 4 is the description of models that were recently developed
to simulate the formation of vascular networks which occurs mainly through the
two different processes of vasculogenesis and angiogenesis. The results obtained by
mathematical models are compared with in vitro and in vivo experimental results.
The chapter also describes the effects of the environment on network formation and
investigates the possibility of governing the network structure through the use of
suitably placed chemoattractants and chemorepellents.

Chapter 5 deals with mathematical models of cardiac bioelectric activity at both
cellular and tissue levels, their integration and their numerical simulation. The so-
called macroscopic bidomain model of the myocardium tissue is derived by a two-
scale homogenization method, and is coupled with extracardiac medium and ex-
tracardiac potential. These models provide a base for the numerical simulation of
anisotropic cardiac excitation and repolarization processes.
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In Chapter 6 the authors discuss the role of delay differential equations for de-
scribing the time evolution of biological systems whose rate of change depends on
their configuration at previous time instances. A noticeable example is the Waltman
model which describes the mechanisms by which antibodies are produced by the
immune system in response to an antigen challenge.

In the last Chapter the authors illustrate recent advances on the modeling of the
human circulatory system. More specifically, they present six examples for which
numerical simulation can help to provide a better understanding of physiopathologies
and a better design of medical tools such as vascular prostheses and even to suggest
possible alternative procedures for surgical implants. Each example provides the
conceptual framework for introducing mathematical models and numerical methods
whose applicability, however, goes beyond the specific case addressed.

This chapter aims as well to provide an account of successful interdisciplinary
research between mathematicians, bioengineers and medical doctors.

We are well aware that this is simply a preliminary contribution to a mathematical
research field which is growing impetuously and will attract increasing attention from
medical researchers in the years to come.

We kindly acknowledge the Italian Institute of Advanced Mathematics (INDAM)
whose scientific and financial support has made this scientific cooperation possible.

Milan, Alfio Quarteroni
February 2006 Luca Formaggia
Alessandro Veneziani
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Inverse problems in biomedical imaging:
modeling and methods of solution

M. Bertero, M. Piana

Abstract. Imaging techniques are a powerful tool for the analysis of human organs and bi-
ological systems and they range from different kinds of tomography to different kinds of
microscopy. Their common feature is that they require mathematical modeling of the acqui-
sition process and numerical methods for the solution of the equations relating the data to the
unknown object. These problems are usually named inverse problems and their main feature
is that they are ill-posed in the sense of Hadamard, so that their solutions require special care.
In this chapter we sketch the main issues which must be considered when treating inverse
problems of interest in biomedical imaging.

Keywords: inverse problems, tomography, image deconvolution, regularization and statistical
methods, iterative reconstruction methods.

1 Introduction

The invention of Computed Tomography (CT) by G. H. Hounsfield at the beginning
of the seventies was a breakthrough in medical imaging comparable to the discovery
of X-rays by W. C. Roengten in 1895. Even if CT and radiography derive from
the same physical phenomenon, the conception of CT was based on ideas which
opened new and wide perspectives. Indeed, CT requires mathematical modeling of
X-ray absorption, in order to provide equations which relate the observed data to the
unknown physical parameters, and methods for the solution of these equations. In
such a way it is possible to exploit the tremendous amount of information contained
in radiographic data: a 3D image of the human body can be obtained, descerning
variations in soft tissue such as the liver and pancreas, and measuring in a quantitative
way the density variations of the different tissues. An accuracy of few percent can
be obtained with a resolution of the order of 1 mm.

The new ideas introduced in CT were soon transferred to other methods for
imaging human tissues. The first was Magnetic Resonance (MR), which is based on
the detection of the signals emitted by the magnetic moments of hydrogen nuclei
when polarized by means of suitable static magnetic fields and excited by radiofre-
quency signals under resonance conditions. Moreover, earlier scintigraphic methods
evolved into the functional imaging techniques known as Positron Emission Tomo-
graphy (PET) and Single Photon Emission Computed Tomography (SPECT). In
these cases a radio-pharmaceutical is administered to the patient and its distribution,
due to metabolic processes, is investigated by detecting the y-rays emitted by the
radionuclides. As we briefly discuss at the end of this chapter, the development of
other techniques, based, e.g., on microwaves and on infrared radiation, is in progress.
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In general, the new techniques of medical imaging are based on the interrogation
of the human body by means of radiation transmitted, reflected or emitted by the
body: the effect of the body on the radiation is observed, a mathematical model for
the body-radiation interaction is developed and the equations provided by this model
are solved in post-processing of the observed data. The same approach applies to cell
imaging by means of fluorescence or electron microscopy.

We emphasize a specific requirement of medical imaging, namely, the need for a
solution in almost real time. In general a refined model of body-radiation interaction
leads to complex non-linear equations, whose solution may require hours of compu-
tation time on a powerful computer. Hence the need to develop sufficiently accurate
linear models, whenever this is possible, or also to design the observation process
in such a way that a linear approximation is feasible. For this reason linearity is the
first issue we discuss in this chapter (Sect. 2).

A second specific feature of biomedical imaging is that the problems to be solved
are ill-posed in the sense of Hadamard. As we discuss in Sect. 3, being ill-posed
implies that it is meaningless to look for exact solutions and that, nevertheless, the
set of approximate solutions is too broad to be significant. In other words, although
the data at our disposal can contain a tremendous amount of information, the fact
that the problem is ill-posed, combined with the presence of noise, implies that the
extraction of this information is not trivial.

A very important consequence of being ill-posed is that mathematical modeling
of the medical imaging process cannot uniquely consist in establishing the equations
relating the data to the solution; it must also include a model of the noise perturbing
the data and, as far as possible, a model of known properties of the solution. Indeed
the modeling of the noise is needed in order to clarify in what sense one is looking for
approximate solutions; on the other hand the modeling of the solution properties must
be used for extracting meaningful solutions from the broad set of approximate ones.
Therefore noise and “a priori” information on the solution are two other important
issues to be considered in biomedical imaging. These are discussed in Sect. 4 and
Sect. 5 respectively. In Sect. 6 we outline the main computational issues concerned
with the solution procedure and the solution methods which are most frequently used
in practice and, lastly, in Sect. 7 we provide a brief description of some of the current
medical imaging techniques in progress.

Before concluding this introduction we briefly describe two important exam-
ples which can be used as reference cases for the general treatments described in
subsequent sections: the first is X-ray tomography and the second fluorescence mi-
croscopy.

1.1 X-ray tomography

In the case of X-ray tomography we adopt a tutorial approach which does not corre-
spond exactly to the data acquisition geometry in CT scanners. Therefore we assume
that we have a source S emitting a well collimated X-ray beam; the beam crosses
the body to be imaged and, at exit, its intensity is measured by a detector D. The
attenuation of the X-rays across the body is described by the following simple model:
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Fig. 1. Geometry of data acquisition in X-ray CT. The source S and the detector D move along
two parallel straight lines with direction 6. The line L, joining S and D, is the integration line,
with direction 6’, orthogonal to 6. A point x of L has coordinates {s, u} with respect to the
system formed by 6, 6’

let f'(x) be the attenuation coefficient at point x (roughly proportional to the density
of the tissue at x); then, if u is a coordinate along the straight line L joining S and D
(see Fig. 1), the intensity loss at x is given by:

%(X) = —f(x)1(x),

where [ is the intensity measured by D.
It follows that, if Iy is the intensity emitted by S, then

I =1 exp{-—/ f(x)du},
L

so that the logarithm of the ratio between the intensities of the emitted and detected
radiation is just the line integral of the attenuation coefficient. By moving the S-D
system along two parallel lines, the plane to be imaged is defined, and, by measuring
the intensity for all the positions, one gets what is called a projection of the unknown
function f'(x). More precisely, if € is the unit vector in the direction of the movement
of the S-D system (linear scanning), s the distance (with sign) of L from the origin of
the coordinate system (see Fig. 1), and 6’ the unit vector in the orthogonal direction,
then the projection of f in the direction 6 is given by

(Py f)(s) =/f(59 + ub)du. (1)
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By rotating the S-D system and repeating the linear scanning for all possible angles
(angular scanning) one obtains all possible projections and the result is the (two-
dimensional) Radon transform of the function f: (Rf)(s, 6) = (Py f)(s). These are
just the data of X-ray CT, obtained by combining the linear and angular scanning
as described above. Then, in order to get the function f, one has to solve the linear
equation

8(s,0) = (Rf)(s,0),

where g(s, 0) denotes the measured data. This problem was solved by Radon in
1917 [59] and its inversion formula in the 2D case can be written as follows [57]:

flo = /Sl /R] = e—sx(‘ 0)dsds, (2)

where P denotes the principal value. This formula clearly shows that the inversion
of the Radon transform is an ill-posed problem since it requires the computation of
the derivative of (noisy) data. Moreover the filtered backprojection algorithm, first
introduced by Bracewell and Riddle [9] in radio astronomy and now widely used in
medical imaging, is just a clever implementation of this formula.

The 3D imaging is obtained by repeating the previous procedure for different
planes, namely, by scanning in the z-direction also, orthogonal to the imaging plane.
Therefore the data of the problem depend on the variables {s, 6, z}, which essentially
characterize the position of the S-D system. These data can be called the image of
f, as provided by the CT scanner. For a given z the representation of g in the plane
{s, 6} is the so-called sinogram. We give an example in Fig. 2. It is obvious that
the interpretation of these data without the help of a reconstruction algorithm is
impossible. As text books in tomography we mention the books of Kak and Slaney
[42] and Natterer [56].

Fig. 2. Left-hand panel: tomographic reconstruction of a section of a human head. Right-hand
panel: the corresponding sinogram



