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PREFACE

This book is designed for students who have had no previous knowledge
of the theory of heat conduction nor indeed of the general theory of partial
differential equations. On the other hand, a degree of mathematical
sophistication is assumed, in that the reader is expected to be familiar with
the basic results of the theory of functions of a complex variable, Laplace
transform theory, and the standard working tools involving Lebesgue
integration. It should be understandable to beginning graduate students or
to advanced undergraduates.

The heat equation is derived in Chapters I and XII as a consequence of
two basic postulates, easily accepted from physical experience. From this
point on, the theorems and results are logical consequences of the heat
equation. If the conclusions are at variance with physical facts, and they
are slightly so, the fault must be traced to the postulates. For example, the
equation forces the conclusion that “action at a distance” is possible. That
is, heat introduced at any point of a linear bar raises temperature instan-
taneously at remote portions of the bar. This scandalizes reason and
contradicts experiment, so that we must conclude that the postulates are
only approximations to the physical situation. But it has also been evident
since Fourier’s time that they are good approximations.

The early chapters develop a theory of the integral transforms that are
needed for the integral representations of solutions of the heat equation.
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Xii PREFACE

Results that are needed here about the theta-functions of Jacobi are
proved in Chapter V. Transforms for which theta-functions are kernels are
used for solving boundary-value problems for the finite bar. No previous
knowledge of theta-functions is assumed. At only one point is an unproved
formula about them employed, and even here, a second approach to the
desired result avoids use of that one formula.

Much of the material in Chapters VIII-XIV is based on the author’s
own research, but it is presented in simplified form. The emphasis is on the
expansion of solutions of the heat equation into infinite series. Here the
analogies from complex analysis of series developments of analytic func-
tions are very revealing. These are pointed out in detail in Chapter XI. In
the final chapter the essential results from four research papers are given
simplified proof.

All the material could probably be presented in a half course. More
realistically, Chapters V, VI, XII, XIII, and those parts of Chapters VII
and VIII dealing with the finite rod, could be omitted. These could be
replaced by classic boundary-value problems.

Theorems are generally stated in the same systematic and compact style
used by the author in “Advanced Calculus” and in “An Introduction to
Transform Theory.” The few logical symbols needed to accomplish this are
for the most part self-explanatory, but a few are explained parenthetically
when introduced.
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SYMBOLS AND NOTATION

Meaning

implies

is a member of

elements X having property P
continuous with derivatives of order < n
continuous

heat polynomial

largest integer <

is transformed into

source solution

derived source solution
complementary error function
theta-function

derived theta-function
convolution

satisfies the heat equation

is a temperature function
satisfies the adjoint heat equation
implies and is implied by

if and only if
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SYMBOLS AND NOTATION

derivative with respect to first variable
approaches

is of the order of

is dominated by

analytic

translation operator

Poisson transform operator

operator on time variable

operator on time variable

class of functions (real variable)
class of functions (real variable)
class of functions (real variable)
Lebesgue integrable

bounded variation

is less than the order of
nondecreasing

nonincreasing

a rectangle

boundary of R

sides and base of R

sides and top of R

bounded

difference of positive functions of H
Huygens property

Hermite polynomial

Kronecker delta

growth of an entire function

m, the maximum order; n, the maximum type
analytic (restricted)

Appell transformation
homogeneous of first kind
homogeneous of second kind
homogeneous of second kind
binomial coefficient

positive definite

Fourier transform of f

subclass of frequency functions
Riemann-Liouville fractional integral
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Chapter I

INTRODUCTION

1 INTRODUCTION

In this chapter we shall set down our basic assumptions behind the
theory of heat conduction and then derive the heat equation in two
dimensions therefrom. We point out its relation to the general theory of
partial differential equations and establish a basic Green’s formula. We
give many examples of solutions of the equation and discuss methods of
obtaining new ones. Finally, we set the stage for deeper study by introduc-
ing formal definitions and notations.

2 THE PHYSICAL MODEL

In the study of heat, a physical model may be imagined in which heat is
considered to be a fluid inside matter, free to flow from one position to
another. The amount of fluid present is measured in some unit such as the
calorie (cal) or BTU (British Thermal Unit). Evidence of its presence in
matter is the temperature thereof, it being assumed that the more heat
present the higher the temperature, and that it flows from places of high
temperature to places of low temperature. Temperature can be measured

1



2 . INTRODUCTION

directly by a thermometer; the quantity of heat present is inferred in-
directly, as we see by the following definition.

Definition 2 A unit of heat is the amount needed to raise the temperature
of one unit of water by one unit of temperature.

For example, in cgs units the unit is called the calorie and is the amount
of heat necessary to raise one gram of water one degree centigrade. A BTU
is the amount to raise one pound one degree Fahrenheit. This is a much
larger unit since 1 BTU = 252 cal, approximately.

This definition already makes an assumption about the behavior of heat,
for it implies that temperature rise caused by a given quantity of heat is
independent of the starting temperature. By experiment this is found to
be only approximately true. But in setting up our model we take cogni-
zance of the fact that we are making approximations to actual physical
conditions.

We now make two postulates about the nature of heat, both of which
can be roughly verified by experiment.

Postulate A (Absorption) The amount of increase in the quantity of
heat AQ in a material is directly proportional to the mass m of the material
and to the increase in temperature Au:

AQ = cm Au.

Here ¢ is the constant of proportionality and is assumed to vary only with
the material. It is called the specific heat of the material. From Definition 2,
¢ = 1 for water. For lead ¢ = 0.03 and for silver ¢ = 0.06, approximately.

Postulate B (Conduction) Consider a straight bar of homogeneous
material, sides insulated, of length Ax and of constant cross section 4. If
the two ends are held constantly at two different temperatures differing by
Au, the temperature along the bar will vary linearly, and the amount of
flow will depend on the abruptness in the change of temperature Au/Ax.
Further, this quantity AQ is directly proportional to 4, to Au/ Ax, and to
At, the amount of time elapsed:

= —yq B
AQ = IAAxAt.

Here / is the constant of proportionality, called the thermal conductivity
of the material, and the flow is in the direction of increasing x when
Au/Ax < 0. To make the postulate graphic, we may think of the bar as
extended along the x-axis of an x,u-plane as in Figure 1.
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(x + Ax, u+ Au)

(x, u)

Figure 1

If Ax and Au are positive, as in the figure, then the flow is opposite to
the direction of increasing x and its rate of flow AQ /At is taken to be
negative, — /4 Au/Ax. In particular, if the temperature gradient Au/Ax is
1° centigrade per centimeter, then / is the number of calories of heat
flowing across 1 sq cm of cross section in 1 sec. For water / = 0.0014, for
lead / = 0.083, and for silver / = 1.0006, approximately.

If the increase in temperature in a given segment of matter of mass m is
a function of time, Postulate A shows that

=cm%|. 0))
o

That is, the instantaneous rate of increase, at time 7, of the quantity of
heat in the segment is proportional to the instantaneous rate of rise in
temperature there.

If the temperature in the above bar is a function of x on the given
interval, Postulate B shows that

Q| _ 0
ot o 2)

Xo ax Xo

at a given instant ¢, That is, the rate of flow across the surface x = x; is
proportional to the temperature gradient there. As pointed out above, the

sign of du/dx determines the direction of flow (to the left in Figure 1 if
du/dx > 0).

3 THE HEAT EQUATION

The heat equation in two dimensions is the partial differential equation

32u du ) (1)



