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EFFECTS OF ACCELERATION ON THE
. RESONNANCE FREQUENCIES OF CRYSTAL PLATES

P. C. Y. Lee and Kuang-Ming Wu
Department of Civil Engineering
Princeton University
Princeton, New Jersey

Summary

The changes in the thickness-shear resonnance
frequencies of circular crystal plates subjected to
steady in-plane acceleration with arbitrary direction
are studied.

A closed form solution for a circular plate under
acceleration with three or more points of mounting is
obtained. From this solution, initial stress and
strain fields are computed at each and every point of
the plate as a function of plate orientation,
direction of acceleration, and positions of supports.
These fields are then taken into account in the coupled
equations of the incremental thickness-shear and
flexural vibrations through the second- and third-order
elastic stiffness coefficients of the crystal.

Due to the space-dependence or non-uniformity of
the initial fields and the smallness of the frequency
changes, (Af/f, in the order of 10°9) a perturbation
method is used to calculate the changes in the thick-
ness-shear resonnances. The predicted frequency changes
are computed as functions of the acceleration direction
and of the positions of the supports for AT cut of
quartz. These are then compared with experimental
values of A. W. Warner and W. L. Smith.

Introduction.

This is the third in a series of studies of the
frequency-sensitivity of crystal resonator plates t
external forces. In the first paper of the series,

a system of six two-dimensional equations, accommodat-
ing the coupling of the flexure, extension, face-shear,
thickness-shear and thickness-twist modes, was

derived for vibrations or waves of small-amplitude
superimposed on finite, elastic deformations due to
static, initial stresses. In these equations, the
nonlinear terms associated to the third-order elastic
stiffnesses in stress-strain relations were included.
Then the frequency changes of the fundamental thickness-
shear modes of circular rotated Y-cuts of quarts,
subjected to a pair of diametrical forces, were studied
and compared with various existing experimental data.2-5
In the second paper,  nonlinear effects of initial
bending on the vibrations of circular quartz plates
were investigated. The plate was flexed as a
cantilever near the edge and stressed by a transverse,
concentrated force applied at a point diametrically
opposite the support. In obtaining the initial fields
caused by bending, strain components were assumed to

be small, but large gradients of plate deflection and
large rotations of the plate element are permissible

by retaining their quadratic terms in strain-displace-
ment relations. Predicted values were compared with
the measured ones by Mingins, Barcus, and Perry.3 In
both cases, explicit formulas for predicting frequency
changes were obtained in terms zero- and first-order
strains through the second- and third-order elastic
stiffness coefficients.

In the present paper, the equations of motion for
the coupled thickness-shear and flexural vibrations
derived in Ref. 1 are employed in the studies of the
acceleration effects on the changes in thickness-shear
resonances. Experimental investigations on acceleration

effects have been done by A. W. Warner,7 W. L. Snsth,8
and by M. Valdois, J. J. Gagnepain and J. Besson.

Circular Plate Under In-Plane Acceleration

A circular plate of radius R is referred to the
rectangular coordinates X, Y, Z with XZ plane as the
middle plane of the plate. The plate is supported by
a number of metal ribbons attached to the edge of the
plate. Their locations are denoted by angles aj,
i=1,2,...n for n supports (See Fig. 1). The plate is
subjected to a steady in-plane body force G with its
orientation denoted by angle ¢ with respect to X-axis.
This problem is analyzed in two stages. In this
section, initial fields due to the acceleration are
determined. Then the small oscillations superimposed
on the initial fields are studied in the next section.

Equilibrium of Forces and Moments

Let Nj and T4 denote the normal and tangential
components, respectively, of the force from the
support at o4 to the plate (See Fig. 1). For the
equilibrium of the plate under the:body force G
(force per unit volume), we require

EFx =0
2 coss + | )
G 2b m R” cos¢ + N, cosa, - T, sina, = 0
i=1 i i 1=1 i i
EFz =0 1
- rft«i tfr 0
G 2b m R” sin¢ + sina, + cosa, =
1=1 1 i = i 1
IM =0
o o
T, =0
=1 1

Force-Displacement Relations

Let u, and w, denote the normal and tangential
components, respectively, of the displacement of the
support at a;. Assume that the response of each metal
ribbon can be represented by a cantilever beam
subjected to end forces Ny and Tj. Then for a metal
ribbon of length £, and rectangular cross-section area
h1 xhy, the force-displacement relations are,

==-KI,w

N, =-KI u, , Ti 2 Yy (2)
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where K = 3E/£3, I1 = hzhi/IZ, and I, = hlhg/12. We
note that

N B2
Yy = Il/I2 h1/h2 << 1..

Compatibility of Displacements of Supports

Let u and w be the rigid body displacements in X
and Z directions, respectively, and a the rigid body
rotation about Y axis of the plate. Assume that
relative displacements between any pair of material
particles within the plate caused by the initial body
force .are small as compared with the rigid body
translations u and w. Then the compatibility relations



among the displacements of the supports are

u; = ucos oy + w sin oy 3)

i = - u sin ai +w cos oy + R a

w
We have thus obtained from eqs. (1) - (3) a system of
(4 x n + 3) equations with uj, w,, Ny, Ty, u, w, and

o as the (4 x n + 3) unknowns. it can be reduced to

a system of three equations in terms of u, w, and a by
substituting (3) into (2) and, in turn, into (1) as
follows. '

—Y}:ci-Zsi - (1-v) !Zsici Zsi u -G cos
2 2 =
(1 Y)Esici —y}.‘.si—,zci —Zci w |= |-G sin (4)
- Zci I sy n Ra 0

where

2
= 2b m™ R
G X Iz G, si sin ai, ci = cos ai.

Once u, w, and a are obtained from (4), we can
compute support displacements from (3) and support
forces from (2).

Initial Stress Field

The exact solution for an isotropic circular
plate which is subjected to body force G and boundary
forces Ny and T; may be obtained from Michell's
solutions in plane-stress theory of elasticity. The
rectangular components of stress at a point P(x,z) are
given by

n
= S | 1 1
%x igl(axi hwbR) 2 Gx = 2 Gz 2
n N
- i, ,1 -1
0z 121(021 AHbR) 2 Gx x 2 Gz z (5)
n
1 1
.= J T, -56G z-5G_ x
Xz i=1 xz, 2 x 2 "z

where Gx = cos ¢, G

z = G sin ¢.

Or; is the normal stress at point P(x,z) due to forces
N;~ and Tj applied at point Aj(xj,2zy). It is a normal
stress acting in the direction FKi or along ry (See
Fig. 2) and is given by

1

T, = nbri (Ni cos ei + Ti sin 61) - (6)

or in rectangular components

x4 ri i
& =g ain® B 6)'
z, ri i

T =g

sin B, cos B,.
xzy i i i

Once the locations of points A, and P, or a,, X., zj,
x, and z, are given, the other quantities in the above
equations may be obtained through geometrical consider-
ations as follows.

R | 2 _ -
cos 91 ?Ei (R z; 2z Xy x)
sin 6 =L(z X - X, z)
1 riR i i

)]

ri = (x - xi)2 + (z - zi)2

By=(ay +8)+2mm

where m is an integer so chosen that 0 < By < m

Initial Strain Field

Due to the symmetry of the applied forces and the
plate itself with respect to XZ plane, we take
U{O), Uso) and U£1) as the non-zero initial displacement
components. Then by linearizing the initial strain-
displacement relations, eqs. (53) of Ref. 1, we have

0) _ ,(0) _ ,0)

) ha+» B3 =33 -
©) _ (D ©)_ (0) _ (0)

E) U™ » 2Bg7=0, 3=U3)

For the last relation of (8), it is assumed that in-
plane rotation associated with initial deformation is
negligible,

0) (0)
1,3 ¥ 91

The above strain components may be cecmputed from
the initial stress-strain relations, eqs. (49) of
Ref. 1,

f.e. (U /2 = 0.

180 = 2 ¢ £(® 9
P Pqa 9 ; ’
where T(o) are related to components of initial stress

obtained from (5) by following relations.

0)_ o) _
Tl 2bcx, T3 2bcz

(10)
(0)
T13 = 2b Tz’
The initial stress field is calculated from (>)
for a circular plate with four supports. Two of the
supports are along the xj axis and the other two along
the x3 axis. The plate is subjected to a body force
G =15 g in the -x; axis direction. The distribution
of stress components along diameters oriented in x;
direction, 45° from x,, x4 direction, and 9° from x3
are shown in Figs. 3-6, respectively. Stresses due
to forces which are statically equivalent to those
calculated from (2), but uniformaly distributed over
the supported area are also calculated and are shown
in dashed lines in Figs. 5-6. The comparison shows
that the differences are not significant in the
electroded central area, but they are more pronounced
near the edge of the plate.

Thickness-Shear and Flexural Incremental Vibrations

For rotated Y-cuts of quartz vibrating in the
vicinity of the thickness-shear frequencies, the
predominent component of incremental displacement is
ufl) which is coupled to u(0), The coupled equations
of motion of thickness-shedr and flexural modes with
ulo s Eéo) and T(0) of (8) and (9) as unknown functians
of x; and x, are obtained from eqs. (55) of Ref. 1
as follows.
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where the incremental stress-strain relations, egs.
(50) of Ref. 1, are
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and the incremental strain-displacement relations, eqs.
(53) of Ref. 1, are
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The displacement equations of motion of u(l)(xl,c)and
u 0)(x1,t) are obtained by substituting (13) into (12)
then into (11). The resulting equations in terms of
dimensionless variables

p= D, u- u§°)/b (14)
are
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where T4 and ii are functions of initial fields and
material constants Cﬁ and C r The space dependence
of these functions through tgg initial fields makes the
exact solutions of (®5) very difficult to obtain. A
careful examination of these functions reveal that

each function can be separated into two parts as

Ti =T +t

i i

B : (16)
Fi = Fi + fi g

where Ty, F; are associated vibrational motion without
initial stresses and dependent on material properties
only, while tj, fi are contributed by initial fields
and are space dependent. Expressions of these
functions are given as follows.
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By setting initial fields to zero in (17) and (18), we
have

2 €,
T, = ’T--I'T--b'
1 3'(2 c 3 5
1 766 (20)
2
Fz-b, F‘.b’
and Ty =T, =F, = Fy = !5-- 0. It can be seen that

(15) reduce  to the coupled equations of thickness-
shear and flexural vibrations when there are no
initial stresses.l? For free vibration problems, (15)
may be written in the following matrix form.

Lv = Av (21)

where L is the linear differential operator and is
separated into two parts as the following.

L=1, +0Q ey
where
113,141, Ts9,

L =
M Y 1

|3 P29 3 Fidy
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In (21), v is the displacement in vector form and
is related to the dimensionless frequency 2 as follows.

¢

u

(24)

A= - g?

- - (w/wl)2
2 2 1/2

where w, = [3x] Cge/ob”] is the lowest thickness-
shear “cut-off frequency of an infinite plate without
initial stresses. We note Ly is the part of the
operator associated to motions without initial stresses
while Q is the part of the operator which includes all
the effects of initial fields. Since the values of

tj and fi are several orders of magnitude smaller

than those of Tj and Fi, respectively, it is appropriate
to employ the perturbation method to obtain the
frequency changes due to acceleration.

Let
- (1)

A Ao + A (25)
vasv + v(l)

° .
where v_and A _satisfy

o o

Lovo = ono (26)

(26) are the equations of motion of the thickness-shear
and flexural vibrations without initial stresses.

Their solution form and dispersion relation may be
obtained from eqs. (20), (22), and (24) of Ref. 12.

We further impose traction-free boundary conditions
t£9) = t{%) = 0 (from eqs. (61) of Ref. 1), at

x1 = 4+ R,

du+t e =0, 24=0 (27)

and normalization

[ Vo * Ve dA = 1 (28)
A

The changes in the resonance frequencies of the
fundamental thickness-shear modes are

J vo-Q-v0 dA
A

o o A
o

]
[ ]
N[

= F(0,0,0,,R/b) (29)

We see that frequency change is a function of plate
oriention 8, azimuth angle of body force ¢, locations
of the supports @y, and the ratio of the radius to
thickness of the plate R/b.

Calculations for frequency changes are made for
circular AT-cuts of quartz plates with diameter
2R = 15mm, thickness 2b = 1.69 mm. The plate is
subjected to_an acceleration with G = 15 g =
14700 cm/sec? and supported by four nickel ribbons of
length £ = 6.35 mm and rectangular cross-section
(hy = 0.076 mm and h, = 1.270 mm). The Young's modulus
for Nickel is E = 4.82 x 10 dyne/cm?.  The predicted
frequency changes Af/f as a function of azimuth angle
¢ for three different support configurations are made,
using Bechmann'sl3 values of the second-order elastic
coefficients and those of Thurston, Miskimin, and
Andreath!4 for the third-order coefficients. These
predicted results are shown in_Figs. 7-9 apd compared
with measured values of Warner’ and Smith. It can be
seen in Figs. 7 and 8 that the agreements of Af/f
between predicted and measured values are reasonable
both in magnitude and variation. In Fig. 9, the
measured values are quite different from the calculat-
ed values (solid lines) and also different in gemeral
character from the measured values for the two plates
which have slightly different mounting configurations
as shown in Figs. 7 and 8. It appears possible that,
in presenting experimental values of Af/f for
various orientation of accelerations, -x axis
instead of +x, axis of the plate was used as the
reference. If this is the case, then all the data
should be shifted by 180° in abscissa. The calculated
values after shifting by 180° are plotted in dotted
lines in Fig. 9 for comparison. It is seen that
agreement becomes close. When looking at the results,
we should keep in mind simplifications have been made
in order to obtain the mathematical solutions. The
plate is assumed to be uniform in thickness and
vibrating at frequencies of the fundamental thickness-
shear modes. The actual plates used in experiments
are double-convex and excited at frequencies of the
fifth overtone of the thickness-shear mecdes.

Once the accuracy of the analytical solutions are
established, the acceleration sensitivity of
resonance frequencies can be computed systematically
as functions of various effecting factors, i.e. the
orientation ¢ and magnitude G of acceleration,
geometry of the resonator plate R/b, positions of the
supports a;, orientation of the plate 6, and the
linear and nonlinear material coefficients.
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CALCULATIONS ON THE STRESS COMPENSATED (SC-CUT) QUARTZ RESONATOR *

E. P. EerNisse
Sandia Laboratories
Albuquerque, New Mexico 87115

Summagz

Theoretical calculations have been carried out on
the doubly~-rotated SC-cut quartz resonator. The reso-
nant frequency of this resonator is free from the
third-order elastic constant effects of static mechan-
ical stress bias. Calculations show that this stress
compensation can be adjusted independently from the
temperature campensation during fabrication. Angular
tolerances necessary to attain the stress campensation
are investigated, The theoretical results are shown
to agree quantitatively with recently published ther-
mal shock measurements., General expressions for the
SC-cut and AT-cut are provided to allow simple calcu-
lation of the frequency shifts dve to any static mech-
anical stress bias,

Introduction

The SC-cut was introduced at the 29th Annual
Symposium on Frequency Control. This doubly-rotated,
quartz resonator is a member of the (yxwl)p,9 thick-
ness-shear mode family, It is temperature compensated
and free from frequency shifts induced through third-
order elastic constant effects by static mechanical
stress biases in the plane of the resonator blank,
The sources of the static mechanical stress biases
could be acceleration, electrode stress, or the mech-
anical mounts, The third-order elastic constant ef-
fects are surprisingly large when compared to today's
frequency control requirements, In fact, changes in
mechanical stress bias with time have been suggested
as a source of long-term frequency drift.l:

In the present paper, calculations on the SC-cut
are presented which are intended to aid in the fabri-
cation and experimental investigation of this poten-
tially important quartz resonator. The coefficient
relating frequency shift to static mechanical stress
in the electrodes (called the stress coefficient) is
shown as contour plots on the ¢,0 plane, The sensi-
tivity of this stress coefficient to errors in ¢ and
6 are discussed quantitatively. It is found that the
stress coefficient in the vicinity of the SC-cut is
dependent almost entirely on ¢ alone, while the first-
order temperature coefficient is dependent almost
entirely on 6 alone. These facts should make the
SC-cut easier to study as well as to manufacture.

A general, quantitative expression for the third-
order elastic constant effect in terms of ¢ and 6 is
presented for the SC-cut which will allow calculation
of the influence of any mechanical stress bias on the
resonant frequency of the SC-cut. A similar general
expression is presented also for the AT-cut so that
future workers can compare the relative merits of the
SC-cut vs., the AT-cut, i

Finally, the similarity of the present SC-cut and
the Ts-gut (thermal shock compensated) proposed by
Holland” is discussed. 1In fact, it is demonstrated
that the results of a recent experimental search’ for
a thermal-shock compensated quartz resonator can be
explained quantitatively with the present calcula-
tions., This comparison lends credence to the exis-
tence of the SC-cut and demonstrates the generality of
the present calculations.

Theogz

The theory for the effects of static mechanical
stress bias on the resonant frequency of thickness-
shear quartz resonators has been adequately presented
before. The theory is based on the formulation by
Thurston and Brugger,” which holds for isothermal,
homogeneous conditions. The limitation of isothermal,
homogeneous conditions means that the present calcula-
tions apply rigorously for cases where the time scales
of interest are long compared to the thermal time con-
stant of the thickness dimension of resonator plates,
This thermal time constant t; can be estimated from
solutions® of the differential equation for heat flow
in a slab bounded by x = * Tq/2 (plate thickness = Tq):

pCT2
—_—

5 = (1)
T n2K

Here p is density in kg/m3; K is the component of the
thermal conductivity tensor along the thickness direc-
tion in joules/(sec~m-K); and C is specific heat in
joules/(kg K). The specific heat depends on the mech-
anical boundary conditions and varies according to the
amount of work done by the stress-strain fields during
thermal expansion, The details for the case of a
plate heated nonuniformily along the thickness dimen-
sion has been worked through by Holland;( a typical
number for t_ can be calculated using his numerica
values for the largest decgy constant and handbook
values for K. We estimate® K as 8.0 Jjoules/(sec-m-K)
for the AT-cut at room temperature. For a 5 MHz, 5th
overtone, AT-cut precision crystal thickness of 0.17cm,
tr is 71 msec, a re&ult comparable to the 65 msec es-
timated by Kusters, These times are short relative to
to the time scales of the majority of experimental
conditions to which quartz resonators are subjected,
Thus, the present isothermal, homogeneous theory is
applicable to a large fraction of technically inter-
esting problems involving static mechanical stress °
bias in quartz resonators.

The theoretical formulation can be summed up in
the relationl;?

; =1 -
A/t = (20 W) [Aa+ 2pow§UB§ZB+ BeB 55Cays) 0T, (2)
Here, matrix notation is used for tensors (e, B, 7, b
run 1-6), f is the thickness shear resonant frequency,
Af is a change in that frequency, Po is mass density
in the unstressed condition, s,g is the isothermal
elastic compliance tensor, CB s is the isothermal
third-order elastic-stiffness tensor, T, is the aver-
age stress bias in the gquartz averaged over the thick-
ness dimension 7_, and ATy is a change in the average
static stress bigs. The Aa’ %3’ and qz are defined by

(A, Ay, Agy A, Ag, A

= [Ninl’ NN, N3N3, 2N2N3, 2N1N3, an,N,] (3)

[Uys Up, Ug, Uy, U, U]
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[Bl” Bg: B3) Blp Bs) Bs]

o] o} (o] (o} (o]
= +
N2, W3, NgU3, NUZ + NoU,
o (o] (o] (o]
NS + NUT, NUp + NeUl] 4 (5)

Here°N; is the unit vector in the direction_of acoustic
wave propagation (thickness of plate) and w% and U are
the slow shear wave eigenvalue and eigenvector of
“2.[’.0 - (o] 6
po ok -NrNscjrksUJ ? (6)
where tensor notation is used (subscripts run 1-3) and
Cjrks is the isothermal elas#ic stiffness tensor,

Piezoelectric effects on resonant frequency are small
in quartz and are ignored here.

The values for AT, are found from the specific

static stress bias patterns under consideration and ‘

are usually identifiable more easily in the plate axes
system. A rotation of Nﬁz to the same axes system as
that used for the elastic tensors is necessary before
the contractions in Eq. (2) can be carried out, *

Theoretical Results

The choice of 0T, for Eq. (2) is unlimited and a
general study is impractical. A planar isotropic
stress bias is representative of many experimental
situations and is chosen here for the study of stress
effects as a function of ¢ and 6. The case of a
planar isotropic ﬂa which is generated. by an electrode
stress has been treated before,. Let Y be the aver-
age static mechanical stress bias referenced to the
plate axes (x1 is length, x, is thickness, x, is
width). We represent the effect of the electrode
stress by the force per unit width, S, acting across
the electrode-quartz interface (S is the integral
through the electrode thickness of the electrode stress
and is in units of dyn/cm), A change in S, AS, causes

oY, = A&f3 = -8s8/1, ,
8%, = o%, = Aﬁ's =¥ =0 (7)

in the quartz, Here 7, is the plate thickness and the
minus sign arises because the static stress bias in
the quartz is a reaction to the electrode stress

(s positive is' tension in the electrode)._ After rota-
tion of ATy to the crystal axes to find AT, , AS/t

can be factored out of Aiu to form : 1

AF _ . AS
T okT ()
q
where
=3
K= - (@ W) Ay 2 WiV gt BB, 55aCays]
(ATaTq/AS) (9)

was called the stress coefficient in earlier worksl'9
and is a function of ¢ and 6 only.

Contours of K in the (¢,6) plane are shown in
Fig. 1 as calculated with published valuesiO 1l for
the various elastic constants in Eq. (9) Included in
Fig. 1 is the loci of the zero first-order temperature
coefficient,12 Let us focus our attention first on
the SC~-cut which is the intersection of the zero con-
tour of K and the zero first-order temperature coeffi-
cient at ¢ = 22,4° and 6 = 34,3°, The contours of K
are almost horizontal there, This means that 6 can be
adjusted around the SC-cut with little effect on K.
Likewise, the loci of the zero first-order temperature

X, = thickness direction, x

coefficient is nearly vertical there. This means that
¢ can be adjusted with little effect on the first-
order temperature coefficient, This relative ortho-
gonality of the stress effect and the temperature ef-
fect has technological impact for it suggests that one
can independently adjust the stress and temperature
response of the SC-cut,

The right-hand scale of Fig. 1 has been centered
on the SC-cut., This was dore to allow for the inevi-
table differences between theoretical calculations and
experimental reality which arise both from inaccura-
cies in the values for the elastic constants and from
contouring effects. Noting the right-hand side of
Fig. 1, we see that fabrication with an accuracy of
% 1.5° on¢ will reduce the stress coefficient by at
least a factor gf 10 relative to the AT-cut value of
0.273 x 10"1lem®/dyn. An accuracy of * 0.2° on @
during fabrication will provide a reduction in the
stress coefficient of at least 100 relative to the
AT-cut.

It must be emphasized here that Eq, (9) and the
definition of K are specific to the case of stress
changes in the electrodes. As such, Eq. (7) leads to
the minus sign in Eq. (9) which allows a direct rela-
tion between the frequency shifts (Af) and changes in
electrode stresses (AS), Equation (2) is the more
general relation and should always be used as the
starting point for studying the effects of static mech-
anical stress biases independent of their origin., For
this reason, we present here Eq. (2) as evaluated for
the SC-cut to facilitate any further work on the ef-
fects of arbitrary, static mechanical stress biases.
For the SC-cut, we find (® = 22.4°, 8 = 34,3° in the
calculations)

Af/f = (-0.1580 ATl - 0.0891k4 ATz + 0.171k4 AT3

+ 0.2167 ﬁh + 0.3767 ATS + 0.3694 A':E6)x 1074 (10)

For comparison, we find for the AT-cut (¢ = 0°,
8 = 35.25°)

Af/f = (-0.2674 Ai—‘l - 0.05161 A'T_e + 0.2133 AT3
11

+ 0.2773 Afh + 0.0 AT_ + 0.0 AT6)x 10”7 (11)

5
In using Eqs. (10) and (11), remember that AT, is
referred to_the crystal axes, not the resonator plate
axes, and AT, is in dyn/cm<, :

Alternately, most workers will find it easier to
work in the resonator plate axes (xl = length direction
= width direction). See
Reference 13 for the axes ahd (yxwi)p,6 conventions
used here. Equations (10) and (11) have been rotated
to the resonator plate axes; we find for the SC-cut

Af/f = (-0.01786 Aafl - 0.,07560 A‘I‘2 + 0.01772 A§’3
+0.1969 A, +0.090kk A, +0.2457 0¥, 1071 (12)
and for the AT-cut
bf/f = (-0.2674 AT, + 0.1673 A, - 0.005634 A'fl‘a
-11
+ 0.1711 A‘i"l+ + 0.0 A"l'5 +0.0 A% )x 107 . (13)
In Eqs. (12) and (13), remember that AT, is in the
plate axes system and is in units of dyn/cm?, For
example, with A"m‘} = AT, = -1,0 in Eq. (7), Eq. (12)

leads to the Af/F of 03273 X 10-11, the value quoted
for K of the AT=-cut,



