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Preface

This introductory text is directed at undergraduate and postgraduate
students, as well as practising engineers, who wish to utilise the finite element
method to solve irrotational and viscous flow problems. The basic concepts
are presented in a manner which does not require any previous knowledge of
the technique being outlined. The simplistic approach is accompanied by a
modular type software development in which each section or subroutine can
be examined in isolation. By following such an approach and adopting an
engineering style of presentation, the mathematical concepts and formal
proofs have been kept to a minimum, although some have been included, as
required, to maintain continuity of the evolution of the technique.

The adopted modular approach is particularly useful for those who wish to
devise specialised software directed at solving a narrow range of problems.
Since each subroutine can be considered individually quite sophisticated
modifications can be incorporated with a minimum of reference to the
remainder of the program. This feature can, obviously, be used to advantage
for contraction and expansion of the overall program.

Steady state incompressible two dimensional irrotational and viscous flow
can be analysed using the programs included in the text. Indeed, an
introduction to the utilisation of the technique to solve turbulent flow
problems is presented in Chapter 9. Since the solution procedure is iterative
the software can be readily expanded to include time dependency and
sophisticated models of turbulence. Descriptive examples are included, where
appropriate, the majority of which can be solved by hand calculations. The
sequential processes associated with each subroutine are described in detail so
that modifications can be conducted with a minimum of effort. In order to
facilitate any development a complete set of software is available, on request,
via the publishers.

The material contained in the current text is based on the experience gained
when teaching and conducting research into a wide range of engineering
problems. The authors wish to thank their colleagues who, during discussions,
contributed to the clarification of many of the ideas presented.

1981 C. TAYLOR
T. G. HUGHES

X1



8263976

Contents

Preface

1

An Introduction to the Numerical Appraack

1.1 Introduction

1.2 Basic concepts

1.3 General program structure
1.3.1 Subroutines

Mathematical Concepts and Weighted Residual Techniques

2.1 Introduction
2.2 Two dimensional form of the governing equations
2.2.1 Conservation of mass
2.2.2 Conservation of momentum
2.2.3 Vorticity — stream function form of the
governing equations
2.3 Axisymmetric flow
2.3.1 Conservation of mass
2.3.2 Conservation of momentum
2.4 Method of weighted residuals
2.4.1 The Galerkin weighted residual method
2.5 ‘Weak’ formulation of the governing equations

Basic Concepts

3.1 Introduction

3.2 Application of the method of weighted residuals
3.3 Spatial discretisation

3.4 Shape functions

3.5 Preliminary concepts

3.6 Normalising

3.7 Isoparametric elements

3.8 Numerical integration

3.9 Transformation for first order terms

3.10 Computer coding

3.10.1 Subroutine SHAPE 4 — shape function routine

for four noded element

3.10.2 Subroutine SHAPE 8 — shape function routine

for eight noded element

v

X1

AN NN = =

10

10
10
10
11

13
14
15
15
16
18
23

30

30
32
33
33
34
37
40
44
46
48

48

49



FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

3.10.3 Subroutine DJACOB — evaluation of the
Jacobian

3.10.4 Subroutine DRIVES — subroutine for the
evaluation of element shape functions and
derivatives, coordinate transformations

Equation Assembly into Matrix Form

4.1
4.2
43
4.4
4.5
4.6

Introduction

Equation assembly

Matrix assembly

Solution technique

Boundary conditions

Computer coding

4.6.1 Subroutine JORDAN — Gauss-Jordan reduction
routine

4.6.2 Subroutine SURFIN — used in the evaluation of
boundary conditions when gradient specified

4.6.3 Subroutine PRESCR — directional normal
velocity (potential) gradients evaluated on
boundaries

Formulation of the Matrix Equations

5.1
52
5.3
5.4

5.5
5.6
5.1
5.8

Introduction

Norisalised Navier-Stokes equations

Boundary and initial conditions

Matrix formulation with essential and natural boundary

conditions

Tterative procedure

Accuracy of solution

Example

Computer coding

5.8.1 Subroutine MATRIX — formulates element
matrices for the full Navier-Stokes equations

5.8.2 Subroutine TOLREL — subroutine for checking
specified tolerance for each variable

5.8.3 Subroutine ITERAT — controls iteration
procedure when solving the Navier-Stokes
equations

Equation Solution Technique: Unsymmetric Matrices

6.1
6.2

Introduction
Basic philosophy of the frontal method

vi

52

58

58
59
70
73
75
85

85

91

95

95
96
97

98
103
103
104
105

105

114

116

120

120
122



CONTENTS

6.3 Subroutine FRONTS — outline of sequence

6.3.1 Prefrontal operation — operations
undertaken prior to entering main solver
6.3.2 Element assembly — assembly of global matrices
6.3.2.1 The identifying vector LOCEL (NEVAB)
— identifies location of a variable within
the global array
6.3.2.2 Heading and destination vectors
LHEDV(NFRON) and NDEST(NEVAB)
6.3.2.3 Actual assembly of the grand fluid matrix
6.3.3 Equation elimination — outline of the
elimination process
6.3.3.1 Fully summed equations — initiation of
the elimination process
6.3.3.2 Pivotal search and equation normalisation
6.3.3.3 GFLUM(NFRON,NFRON) matrix
reduction
6.3.3.4 Store pivotal equations on disc
6.3.4 Back substitution — outline of Gauss-Seidal
elimination

6.4 Explanatory worked example
6.5 Subroutine FRONTS — matrix solution routine

Input/Output — Error Diagnostics on Input

71
7.2

7:3
7.4
7.5
7.6

7.7
7.8
79

Introduction

Input subroutine DINPUT — input subroutine for

Navier-Stokes equations

Control data — definition of control parameters

Element geometry and topology

Initial conditions

Boundary conditions

7.6.1 Natural boundary conditions

7.6.2 Essential (forced) boundary conditions

Diagnostics — tracing errors on input

Ouput — echo facility

Computer coding

79.1 Master FLUID — control subroutine

7.9.2 Subroutine DIMENS — dynamic dimensions of
required arrays

7.9.3 Subroutine DINPUT — Navier-Stokes equations
— input sequence for the full Navier-Stokes
equations

vii

123

123
125

126

126
127

127

127
127

128
129

129
130
139

154
154

155
155
157
158
159
159
160
161
161
161
161

164

165



FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

79.4 Diagnostics subroutine DIAGN1 — conducts

error checks on the control parameters 171
7.9.5 Diagnostics subroutine DIAGN2 — checks on
remaining data 174
7.9.6 Subroutine WRITER — outputs initial and
updated values of the pertinent variables 176
8 Numerical Examples 179
8.1 Introduction 179
8.2 Example 1 — flow between parallel plates 179
8.3 Example 2 — flow past a cylinder 180
8.4 Example 3 — two dimensional flow over a backward
facing step 198
9 Introduction to the F.E.M. in Turbulent Flow 203
9.1 Introduction 203
9.2 Incompressible turbulent flow — governing equations
used in text 204
9.3 Turbulent flow in pipes 206
9.3.1 Van Driest hypothesis 206
9.3.2 Evaluation of local boundary shear stress 207
9.3.3 Solution procedure — iterative scheme employed 208
9.4 Fully developed and developing flow ina pipe 208
9.41 Example — fully developed flow in a pipe 209
9.4.2 Example — developing flow in a pipe 211
9.5 Subroutine TMATRX — matrix subroutine for
turbulent flow 212
9.6 Mixing length, one and two equation models 215
Appendix A — Relevant Matrix Theory 219
A.1 Definitions 219
A.2 Addition of matrices 220
A.3 Multiplication of matrices 221
A.4 Transpose of a matrix 221
A.5 Determinant of a matrix 222
A.6 Inverse of a non-singular matrix 222
A.6.1 Example 223
Appendix B — User Instructions 25
B.1.1 Data classification 225
B.1.2 Control data 225

B.1.3 Fluid properties 225

viii



CONTENTS

B.1.4 Geometric data
B.1.5 Initial conditions
B.1.6 Boundary conditions

B.2
B3
B4
B.S5
B.6

Index

Peripherals used

Instructions for preparing data

Changing dimensions

Example of input data — Navier-Stokes
Example of input data — irrotational flow

ix

225
225
225
226
226
228
229
238

241



Chapter 1

An Introduction to the Numerical
Approach

1.1 Introduction

A set of mathematical equations governing the flow of a viscous fluid was
developed early in the 19th century and presented as the well known Navier-
Stokes equations'?). These equations, in their most general form, together with
the equation of conversation of mass are purported to interconnect the
pertinent dependent variables which describe the flow of a viscous fluid. Since
that time the basic form of the equations has remained unchanged even when
turbulence phenomena are introduced®. Indeed, most present day develop-
ments in research where turbulence is significant are based on the Navier-
Stokes equations ®. The work of subsequent researches has, therefore, been
directed at evolving equation solution techniques and subsequently extending
such techniques to include additional non-linearities. These include such non-
linearities as turbulence, heat transfer, shock waves etc.

The development of methods of solution has followed, as in all branches of
science, well trodden paths. Early analytical approaches were later, circa 1900,
supplemented and sometimes superseded by numerical methods. The signi-
ficant contribution made by Thom™® is widely considered to be the first
definitive work on numerical methods in the present field of interest. This
seved as a bench mark for a considerable number of subsequent numerical
analysts. During the late 1940’s, electronic computers emerged as a powerful
tool'which could be employed to advantage by engineers and scientists. This
era was accompanied by a renewed vigorous interest in the development of
numerical techniques to solve hitherto intractable problems. As always, the
availability of a new research tool resulted in rapid advances in the
technological field. In fluid mechanics these have been so significant that a re-
appraisal of the basic concepts associated with the evaluation of the
hydrodynamical equations has also been possible. At the present time, since a
suitable solution algorithm has been devised, an in-depth scrutiny of the basic
parameters embodied in an equation becomes trivial and is simply a matter of
repetition. This, of course, is of prime importance if research is to proceed on a
rational basis.

Prior to the late 1960’s the most widely used computer based numerical
methods were the Method of Characteristics®*® and the Finite Difference
Approach®. Both are usually utilised to create an approximate model of the
governing equations which is stored, in matrix form, on a computer. Each

1



2 FINITE ELEMENT PROGRAMMING OF THE NAVIER STOKES EQUATIONS

achieved notable success and, in particular circumstances, can be considered
to be the best approach. Non-linearities can, in most circumstances, be
accommodated with little difficulty and have been used to solve a wide range of
engineering problems. The refinement of such techniques has, over the years,
resulted in highly sophisticated modelling methods, particularly when finite
difference methods are employed”-®). Such techniques fall outside the scope of
the present text since a wide range of excellent literature is already available to
the interested reader.

The immediate success of the application of the Finite Element Method
(F.E.M.) in solid mechanics'® provided, in the late 1960’s, the initial impetus
for the utilisation of the method in Fluid Mechanics. It was thought that the
significant advantages gained in structural mechanics would again be open to
exploitation. This is not always the case but the advantages which were
apparent merited the development of the method. Indeed, it has been
demonstrated that for the analysis of particular problems there are distinct
advantages leading to a significant progress in specific research areas. It is
becoming increasingly clear that the F.E.M. has its rightful place in the
development of numerical techniques for solving complex flow problems.

The range of problems encountered in fluid mechanics is so great that the
authors have adopted a deliberate restrictive policy for the present text. Only
one technique is developed for solving the steady state incompressible form of
the two dimensional Navier-Stokes equations. This allows an in depth
development of the necessary computer programming and solution tech-
niques. The primitive variables of velocity and pressure are used as the
dependent variables. This then forms a basis for further development by the
reader. Indeed, the final chapter illustrates the possible enhancement of the
program to solve turbulent flow problems.

1.2 Basic concepts

The basic concepts associated with the application of the F.E.M. to solve
problems in fluid mechanics are summarised in the idealised block diagram,
Fig. 1.1. Once the governing equation, or set of equations, has been defined
then the basic procedure is conceptually straightforward. The new concepts
are embodied in blocks (3)-(5) where the procedure is highly dependent on the
way in which both the geometry of the flow domain and spatial variation of the
variables is defined. Readers versed in the finite difference techniques will be
familiar with the manner in which this is accomplished. For completeness,
particular techniques for matrix formation and solution will also be presented.
A detailed account of the required procedures for the F.E. M. will be outlined in
subsequent chapters. However, a brief resumé of the pertinent steps will be
included in order to introduce some basic definitions and outline the
procedure peculiar to the present method of approach.

Initially, the governing equations are usually subjected to some minimi-
sation procedure. Following the expressed current restrictive policy only one
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Fig. 1.1 Block diagram showing essential steps in the application of the F.E.M.

such procedure is used — the Galerkin Weighted Residuals Approach*®. Other
techniques, e.g. functional, collocation, least squares, have been adequately
presented in other standard texts'*!*'>!3_In the Galerkin approach the basic
equation is weighted with appropriate discrete weighting functions and the
resulting equation integrated over the region of interest and equated to zero.
For instance, if the flow is governed by the Laplace equation,

Vp=0 (1.1)

where ¢ is a velocity potential, the application of the Galerkin approach
results in,

ka(vlq)) dQ=0 k=123...m (1.2)
Q

where W, denotes a weighting function associated with a discrete point, k,
within the domain, Q, and m is the number of such discrete points. The
weighting function is usually a function of space only.

If (1.2) is to be solved then a spatial variation of ¢ must also be defined. The
first step is to subdivide the flow domain into a number of sub-domains called
elements, Fig. 1.2(a). Each element is associated with a number of discrete
points or nodes located within or on the element boundary. The spatial
variation in ¢ within the element is then defined in terms of the values at the
node points. For instance, if the element has eight node points with associated
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Four noded element

y A
Eight noded element
/
Limit of flow
domain
| \Subdomoin or element
Node point
-
X
Fig. 1.2(a) Domain sub division into elements
bec v, v=0
=0 Number of elements =59
uu=0
b.c
E du .
g ax 0
v=0
- - _ Axis of
u_
loYmax Fy_.(‘) v:0 symmetry

Fig. 1.2(b) Typical distribution and boundary conditions for laminar flow through a
symmetric expansion

values ¢,,0,,03,..¢g then the value of ¢ within the element is written,
o =N,0p; i=1,2,3,::8 (1.3)

in which N is a function of coordinates of the node points. These polynomials
are usually referred to as shape functions. A full derivation of the shape
functions employed is presented in Chapter 3.

Having completed a spatial subdivision of the domain of interest and
allocated suitable shape functions the next stage is to integrate equation (1.2),
over each element and summate the contributions from each element. This is
usually accomplished by some form of numerical integration leading to an
element contribution in matrix form,

?,
(h]-¢{ - (1.4)

Dg
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All such element contributions are summated leading to a final matrix
equation

?
[H]- + y=0 (1.5)

P

where nis the total number of nodal points in the domain. The resulting matrix
equation is then solved, after the introduction of appropriate boundary
conditions, for the nodal values of the variable. The processes outlined above,
leading to an explicit solution, must be modified if more complicated
equations are to be solved. Consider a simple form of the steady state heat
conduction equation in two dimensions,

o (., 00\, 0(, 00\
E(Kﬂ)%_y(&@)_o (16)

where the material properties are dependent on both space and local
temperature,

KX zﬁ(x’y’(p) )
(1.7

Ky =fu(X,,V,‘P)

The processes for setting up the final matrix form of (1.6) follow those already
outlined for the Laplace equation. However, the solution technique now
becomes iterative since the values of conductivity, K, are not initially known.
Equation (1.6) could then be written,

O ( r1008\ O i 100"
ok PN 9 k192 )= §,
ax(K" 0x +6y Y oy 0 G5

where k denotes the current iteration value. Another loop must therefore be
introduced into Fig. 1.1 where the values of the conductivity are evaluated, if
the solution has not converged to within specified tolerances on, say, (¢*
— @*~1), then the matrices are reformed and an updated solution is sought for
the temperature distribution ¢. The equation used in this example is,
obviously, a simplified form of the equations depicting laminar flow.
Nevertheless, the basic concepts and necessary procedures for solving a single
non-linear equation are the same.

1.3 General program structure

The general structure of the program is shown on Fig. 1.3. The general
routines pertaining to the setting up of the necessary matrices are, as far as
possible, given a mnemonic identifier. All relevant routines are called from a
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MASTER FLUID

! b1 !

A S
| DIMENS | [ DINPUT | |  DRIVES | ITERAT

]

11 11 1
[oineN 1] [oiaeN 2]y 4 y & { | [PREsch] [FroNTs]! f[ToLREL]
SHAPE 8 v |v'mnn‘(||wnlrzn|

|DJACOB| | | | SURFIN |
| SHAPE 4 | ﬁﬂrfﬁ v

| DJACOB I

Fig. 1.3 General program structure

master segment, FLUID, which calls, in sequence, all the required remaining
subroutines. A brief description will be included to familiarise the reader with
the overall procedure and subroutine names.

1.3.1 Subroutines
i) DIMENS

A number of vectors and arrays are utilised during the ‘house-keeping’
processes involved in the formulation of the matrix to be solved. The
dimensions required for each of these vectors or arrays is set in subroutine
DIMENS. This permits a form of dynamic dimensioning to be used. The
program can, therefore, be increased or decreased in size to suite a particular
problem.

ii) DINPUT

The data required is read in subroutine DINPUT. This includes nodal point
coordinate location, element numbers and associated nodal points, physical
properties of the fluid, boundary and initial conditions. As the data is input
two further subroutines DIAGN1 and DIAGN2 are called to check that the
data which has been input complies with certain simple checks.

(a) Subroutine DIAGN1 This subroutine checks the overall control para-
meter which governs the number of nodes, number of elements, boundary
conditions and initial conditions for the particular problem under
investigation.

(b) Subroutine DIAGN2 Various checks are incorporated to ensure that the
geometric data obeys some simple criteria.
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If any check fails the data which had not been read to that point will be read
and printed.

iii) Subroutine DRIVES

A subroutine in which the constants necessary for numerical integration of
the relevant equations are defined. Subroutines SHAPE8, SHAPE4 and
DJACOB are called from DRIVES.

(a) Subroutine SHAPE8 The subroutine SHAPES calculates the shape
functions, N, required for defining the variation of the independent
variable over an element which contains eight nodes on the element
boundary, Fig. 1.2(a).

(b) Subroutine SHAPE4 Subroutine SHAPE4 calculates the shape fun-
ctions for a four noded element, Fig. 1.2(a). Two shape function
subroutines are used in the program evolved in subsequent chapters. This
is necessary since the pressure and velocity in the Navier-Stokes equations
are associated with four and eight nodes of an element, respectively. The
reason for this is discussed in Chapter 4 and reference!’*'3-16),

(c) Subroutine DJACOB In DJACOB the first order differentials of the
shape function, with respect to the chosen coordinate system, are

calculated. These are required when such terms as, (%(e (?(p are necessary.
) ) 0x’ 0y
For instance, having defined
(‘Pl )
()
P3
¢=[N1’N2~N3--~N3]'* ’ }
then first order differentials can be written in the form,
?,
N . 2 4
Cp | ON, N, N3 CONg i
éx | éxdx Tox T ox (,0.3 (1.10)
Ps

since N is a function of spatial coordinates x.,y.

iv) Subroutine ITERAT
This is the main subroutine which calls the necessary subroutines for the
evaluation and solution of the necessary matrix equations, transformation of



