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Preface

This book focuses on the kinetics of phase transitions, that is, the evolution of a
system from an unstable or metastable state to its preferred equilibrium state. A
system may become thermodynamically unstable due to a sudden change in external
parameters like temperature, pressure, magnetic field, and so on. The subsequent
dynamics of the far-from-equilibrium system is usually nonlinear and is characterized
by complex spatiotemporal pattern formation. Typically, the system evolves toward
its new equilibrium state via the emergence and growth of domains enriched in the
preferred state. This process is usually referred to as phase-ordering dynamics or
domain growth or coarsening. There has been intense research interest in this field
over the past few decades, as the underlying physical processes are of great scientific
and technological importance. Problems in this field arise from diverse disciplines
such as physics, chemistry, metallurgy, materials science, and biology. As a result of
this research activity, our understanding of phase-ordering dynamics has reached a
high level of sophistication. At the same time, many challenging problems continue
to arise in different contexts. It is now clear that the paradigms and concepts of
phase-ordering dynamics are of much wider applicability than was initially thought.

In the context of the above developments, we believed that there was a strong
need for a book that summarizes our current understanding of domain growth. Fur-
thermore, we believed that this book should be written at a level accessible to the
advanced undergraduate; that is, it should be a textbook rather than an advanced
research monograph. With this in mind, we wrote to various leaders in this field with
a request to each to contribute a chapter. Their responses were very positive, and
this book is an outcome of the collective efforts of various colleagues. On our part,
we have edited and homogenized the various chapters so that this book reads as a
seamless “multiple-author book™ rather than as the usual disjointed “edited book.”

Let us provide an overview of the various chapters. The first chapter (written by
Sanjay Puri) provides an overview of studies of domain growth in simple systems. This
chapter develops the theoretical tools and methodology that are used in subsequent
chapters. The second chapter (written by Kurt Binder) focuses on the distinction
between spinodal decomposition and nucleation and growth, which are common
scenarios for domain growth problems. This issue has been discussed extensively
in the literature, but there remains considerable confusion over the interpretation of
various experiments and simulations. Kurt Binder addresses this issue in great detail,
emphasizing that there is no sharp boundary between spinodal decomposition and
nucleation.

Chapters 3 and 4 are dedicated to a discussion of simulation techniques in this
field. In Chapter 3, Gerard Barkema describes Monte Carlo simulations of Kinetic
Ising models. In Chapter 4, Giuseppe Gonnella and Julia Yeomans discuss lattice
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viii Preface

Boltzmann simulations, which have proved very useful in understanding the late stages
of phase separation in fluid mixtures. Numerical simulations have played a crucial
role in developing our understanding of phase-ordering dynamics. The methodology
described in Chapters 3 and 4 will prove very useful for a researcher entering this
field.

In Chapter 5, Marco Zannetti discusses slow relaxation and aging in phase-ordering
systems. These phenomena are well known in the context of structural glasses and
spin glasses. Recent studies indicate that these concepts are also highly relevant in
domain growth problems—Zannetti provides an overview of these studies.

Recent interest in this area has focused on incorporating various experimentally
relevant features in studies of phase-ordering systems. In this context, Chapter 6 (by
Rajesh Khanna, Narendra Kumar Agnihotri, and Ashutosh Sharma) describes the
kinetics of dewetting of liquid films on surfaces. In Chapter 7, Takao Ohta reviews
studies of phase separation in diblock copolymers. In these systems, the segregat-
ing polymers are jointed, so that the system can only undergo phase separation on
micro-scales.

Finally, in Chapter 8 (written by Akira Onuki, Akihiko Minami, and Akira
Furukawa), there is a discussion of phase separation in solids. Strain fields play an
important role in the segregation kinetics of alloys. Onuki et al. discuss how elastic
fields can be incorporated into the description of segregation in solid mixtures.

Before we conclude, it would be appropriate to thank those who have contributed
to this project. First, we are grateful to the authors, who have made the effort to write
pedagogical reviews of various research problems. Second, we wish to thank our
colleagues and collaborators, who have contributed so much to our understanding
and appreciation of this fascinating field of research. Finally, we are grateful to the
editorial and production staff at CRC Press/Taylor & Francis for their assistance in
getting this book into its final form.

Sanjay Puri

New Delhi

Vinod Wadhawan
Mumbai
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2 Kinetics of Phase Transitions

1.1 INTRODUCTION

Many systems exist in multiple phases, depending on the values of external
parameters, for example, temperature (T), pressure (P), and so on. In this context, con-
sider a fluid (e.g., water), which can exist in three phases, viz., liquid, solid, and gas.
The phase diagram of this fluid in the (7', P)-plane is shown in Figure 1.1. The chosen
phase at a particular (T, P)-value is the one with lowest Gibbs potential G(T', P). This
phase diagram is characterized by a range of fascinating features, for example, lines
of first-order phase transitions, a second-order critical point, a triple point, and so on.
The correct understanding of these features is of great scientific and technological
importance. We have gained a thorough understanding of the equilibrium aspects of
phase transitions (and phase diagrams) through many important works, starting with
the seminal contribution of Van der Waals [1,2].

There is also a fascinating class of problems involving the kinetics of phase transi-
tions, that is, the evolution dynamics of a system that is rendered thermodynamically
unstable by a rapid change of parameters. In the context of Figure 1.1, consider a
situation in which the fluid in the solid phase is rapidly heated to a temperature where
the preferred equilibrium state is the liquid phase. Clearly, the solid will convert to
liquid on some timescale, so the initial and final states of the system are well under-
stood. However, we have less knowledge about the dynamical processes that occur as
the solid converts to liquid. These processes play a crucial role in our everyday life.
Over the years, our understanding of the kinetics of phase transitions has improved
greatly [3—6]. This book provides an overview of developments in this area.

_—
Solid iquid

(T, P)

(Ttl Pt) Gas

a

T

FIGURE 1.1 Phase diagram of a fluid in the (7, P)-plane. The system can exist in either of
three phases—Iliquid, gas, or solid. The solid lines denote lines of first-order phase transitions.
At the triple point (77, P;), all three phases coexist. The point labeled (7¢, P.) is the critical
point of the system.
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Before we proceed, it is relevant to develop the appropriate terminology first.
One is often interested in the evolution of systems whose parameters have been
drastically changed. Such systems are referred to as far-from-equilibrium systems, and
their evolution is characterized by nonlinear evolution equations and spatiotemporal
pattern formation. In most cases, we are unable to obtain exact solutions for the time-
dependent evolution of the system. However, the presence of domain boundaries
or defects in these systems provides a convenient analytical tool to understand the
resultant pattern dynamics.

Let us consider two other problems in this context. These will serve as paradigms
for understanding the kinetics of phase transitions. First, consider a ferromagnet whose
_phase diagram is shown in Figure 1.2. Focus on the case with zero magnetic field
(h = 0). At high temperatures, the magnet is in a disordered or paramagnetic state. If
the temperature is suddenly quenched to T < T, this system now prefers to be in the
magnetized state with spins pointing in the “up” or “down” directions. The evolution
of the system is characterized by the emergence and growth of domains enriched in
either up or down spins. As time ¢ — 00, the system approaches a spontaneously
magnetized state.

Second, consider a binary (AB) mixture whose phase diagram is shown in
Figure 1.3. The system is mixed or homogeneous at high temperatures. At time ¢ = 0,
the mixture is suddenly quenched below the coexistence curve or miscibility gap. This
system now prefers to be in the phase-separated state and proceeds to its equilibrium
state via the growth of domains that are either A-rich or B-rich. The nonequilibrium
dynamics of the magnet or binary mixture is usually referred to as domain growth or
coarsening or phase-ordering kinetics.

N

h

Up

(Tes he)

Down

FIGURE 1.2 Phase diagram of a ferromagnet. The system parameters are the temperature
(T) and the magnetic field (k). The point (7, he = 0) is a second-order critical point. The line
(T < T¢, h = 0) corresponds to a line of first-order transitions. At low temperatures (T < T),
the system can be in either of two phases, up or down, depending on the orientation of the
magnetic spins.
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Homogeneous

(ca=05,T/T,=1)

/T,

Segregated

0 1 1 ] 1
0 0.2 0.4 0.6 0.8 1
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FIGURE 1.3 Phase diagram of a binary (AB) mixture. The system parameters are the
concentration of A (c4 = 1 — cp) and the temperature (7). The point (c4 = 0.5,T /T, = 1)
corresponds to a second-order critical point. Above the coexistence curve (solid line), the sys-
tem is in a homogeneous or disordered state. Below the coexistence curve, the system is in a
segregated or phase-separated state, characterized by A-rich and B-rich regions. The dashed
lines denote spinodal curves. The homogeneous system is metastable between the coexistence
and spinodal curves and unstable below the spinodal lines.

There have been many studies of the kinetics of phase transitions. Problems in this
area arise in diverse contexts, ranging from clustering dynamics in the early universe
to the growth of nanostructures. This book is a pedagogical exposition of develop-
ments in this area and is organized as follows. This chapter reviews the framework of
phase-ordering kinetics and develops the tools and terminology used in later chapters.
The subsequent chapters are written by leading experts in this area and focus on prob-
lems of special interest in the context of phase-ordering dynamics. All the chapters are
written in textbook style and are accessible at the level of the advanced undergraduate
student. At this point, we should stress that our understanding of this area has been
greatly facilitated by numerical simulations of appropriate models. Therefore, two
chapters of this book are dedicated to tutorial-level discussions of numerical simula-
tions in this field. The first of these is written by Barkema (Chapter 3)—this chapter
focuses on Monte Carlo simulations of kinetic Ising models. The second of these is
written by Gonnella and Yeomans (Chapter 4) and describes the application of lattice
Boltzmann algorithms to study phase-ordering systems.

This chapter is organized as follows. In Section 1.2, we introduce the Ising model
for two-component mixtures and study its equilibrium properties in the mean-field
(MF) approximation. This will enable us to obtain the phase diagrams shown in
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Figures 1.2 and 1.3. In Section 1.3, we study kinetic versions of the Ising model.
In Section 1.4, we discuss domain growth with a nonconserved order parameter, for
example, ordering dynamics of a ferromagnet into up and down phases. In this section,
we separately examine cases with scalar and vector order parameters. In Section 1.5,
we discuss domain growth with a conserved order parameter, for example, kinetics
of phase separation of an AB mixture. We will separately focus on segregation in
binary alloys that is driven by diffusion, and segregation in binary fluids where flow
fields drastically modify the asymptotic behavior. Finally, Section 1.6 concludes this
chapter with a summary and discussion.

1.2 PHASE DIAGRAMS OF TWO-COMPONENT MIXTURES

1.2.1 IsING MODEL AND Its APPLICATIONS

The simplest model of an interacting many-body system is the Ising model [7], which
was first introduced as a model for phase transitions in magnetic systems. How-
ever, with suitable generalizations, it has wide applications to diverse problems in
condensed matter physics.

Consider a set of N spins {S;}, which are fixed on the sites {i} of a lattice. The
two-state (spin-1/2) Ising Hamiltonian has the following form:

H==I) 58 8=:=1, (1.1)
(i)

where J is the strength of the exchange interaction between spins. We consider the case
with nearest-neighbor interactions only, denoted by the subscript (ij) in Equation 1.1.
Although the Hamiltonian in Equation 1.1 is formulated for a magnetic system, it is
clear that a similar description applies for any interacting two-state system, as the two
states can be mapped onto S = +1 or —1. A well-known example is the lattice gas or
binary (AB) mixture [7]. We can describe this system in terms of occupation-number
variables n} = 1 or 0, depending on whether or not a site i is occupied by species o (A
or B). Clearly, nf‘ . n? = 1 for all sites. A more convenient description is obtained in
terms of spin variables S; = 2n‘,f‘ -1=1- 2n? . We associate an interaction energy
—€yp between species o and P, located at neighboring sites i and j, respectively. The

corresponding Hamiltonian is

H=- Z [EAAnf‘nf + eBBn?njB + eAB(n?nf + n?n}q)]
(i)

€A + € — 2eaB q(€an — €BB) al
i e D
(if) i=1
N
— S (ean + eaa + 2ean). (1.2)

In Equation 1.2, g denotes the coordination number of a lattice site. The second term
on the right-hand side (RHS) is constant because ) _; S; = N4 — Np, where N, is the
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number of a-atoms in the system. Further, the third term on the RHS is also a constant.
The Hamiltonian in Equation 1.2 is analogous to that in Equation 1.1 if we identify

_ €aa+€pp — 2€4p

/ 4

(1.3)

The Ising model and its variants are not restricted to two-state systems and can be
easily generalized to the case of multiple-state systems. Thus, three-state systems can
be mapped onto a spin-1 Hamiltonian; four-state systems onto a spin-3/2 Hamiltonian;
and so on. In general, higher-spin models have a larger number of possible interaction
terms (and parameters) in the Hamiltonian.

We can obtain phase diagrams for magnets (cf. Figure 1.2) and binary mixtures
(cf. Figure 1.3) by studying the Ising model in the mean-field (MF) approximation,
as described below.

1.2.2  PHASE DIAGRAMS IN THE MEAN-FIELD APPROXIMATION

The equilibrium properties of the Ising model in Equation 1.1 are described in the
MF approximation by the Bragg—Williams (BW) form of the Gibbs free energy [7].
This is obtained as follows. Consider a homogeneous state with spatially uniform
magnetization (S;) = . We approximate the energy as

NgJ

E@) =~ —J) (S)(S)) = —Twz. (1.4)
)

(g

The corresponding probabilities for a site to have up (1) or down (]) spins are

. I+
=% =
2
1.5
i (15)

- Therefore, the entropy for a lattice with N sites is

S(¥) = —Nkg [(1 ;¢> In (1 ;"’) + (%) In (1_7‘“)] . (16

where kp is the Boltzmann constant.
Then, the Gibbs free energy is obtained as

GW) =EW) — hM — TS({), (1.7

where £ is the magnetic field, and M (=N1) is the overall magnetization.



Kinetics of Phase Transitions 7

This yields the free energy per spin as

G(T,h, ¥)

8(Th ) = —4

1
= ——qJV* —h
2q¢ ¥

o (55)m((5%) o (52)m (5]

(1.8)

The RHS of Equation 1.8 is a variational function of the magnetization ¥ = (S;). If
we Taylor-expand the entropy term in Equation 1.8, the Gibbs free energy assumes
the customary *-form:

g(T, h, ) = % (kgT — qJ) W* — hy + %qf“ + 0% —kgTIn2. (1.9

The order parameter ¥ in Equation 1.8 or Equation 1.9 can describe both
ferromagnetic and antiferromagnetic order, withJ < 0 in the latter case. Furthermore,
in the antiferromagnetic case, \r refers to the sublattice magnetzzanon or staggered
magnetization [7].

The equilibrium value of \ at fixed (T, %) is obtained from Equation 1.8 by
minimizing the Gibbs free energy:

9
98 —0. (1.10)
I IS

This yields the well-known transcendental equation [ = (kgT)~1:

Vo = tanh(BqJ Yo + Bh). (1.11)
For h = 0, we identify the MF critical temperature

J
Tp= 2 (1.12)
kg

For T > T, and h = 0O, the transcendental equation has only one solution {y = 0
which corresponds to the paramagnetic state. For T < T, Equation 1.11 has three
solutions Yo = 0, =Y (T). The state with Y9 = O has a higher free energy than do the
equivalent states +{/(7") and —{(T'). Further, Y(T) — 1as T — 0, and ¢(T) — 0
as T — T . The relevant phase diagram in the (7', h)-plane is shown in Figure 1.2.
Next, let us consider the case of the binary mixture (or lattice gas) with Ny (=caN)
atoms of species A and Np (=cgN) atoms of species B (N = N4 + Np). The appro-
B
)

priate order parameter in this case is the local density difference, { = (nj‘) = (n?).

The above analysis has to be modified because the appropriate ensemble for a binary
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mixture is characterized by a fixed magnetization rather than a fixed magnetic field.
The relevant free energy to be minimized is the Helmholtz potential

F(T, V) = EQY) — TS(P). (1.13)
For the BW free energy, we have the expression

_ F(T, )
fTA) = —

:_%qfxv%kBT[(l;w)ln(l;w)*(l_zw)l“(l;w)]'

(1.14)

For a system that undergoes phase separation, there are two possibilities:

(a) We can have a homogeneous (or one-phase) state with order parameter
Yy, = ca — CB. )

(b) We can have a phase-separated state where the system segregates into two
regions having order parameter {r; (with fraction x) and {r, [with fraction
(1 — x)]. The quantity x is determined from the lever rule

Y = x¥1 + (1 — ). (1.15)

Let us minimize the Helmholtz potential f for the _phase-separated state. (The
homogeneous state is the limit {r; = {r».) The quantity f is obtained as

fF=xW)+ A -x0f (). (1.16)

This has to be minimized subject to the constraint in Equation 1.15. We implement
this constraint by introducing the Lagrange multiplier A and minimizing the quantity

A=xf()+ (1 —=x0f(2) — Mxby + (1 — )b — Pal. (1.17)

This yields the equations

0A

I =f() —fW2) = Y1 —¥2) =0,
0A ; B
0 =xf (1) —hx =0,
0A , -
e (I =x)f (Y2) =M1 —x) =0,

0A

FTN =x{y1 + (1 —x)¥2 — 4y = 0.

(1.18)



