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PREFACE

During the last few years modern linear control theory has advanced rapidly
and is now being recognized as a powerful and eminently practical tool for
the solution of linear feedback control problems. The main characteristics of
modern linear control theory are the state space description of systems,
optimization in terms of quadratic performance criteria, and incorporation
of Kalman-Bucy optimal state reconstruction theory. The significant ad-
vantage of modern linear control theory over the classical theory is its ap-
plicability to control problems involving multiinput multioutput systems and
time-varying situations; the classical theory is essentially restricted to single-
input single-output time-invariant situations.

The use of the term ““modern’” control theory could suggest a disregard for
““classical,” or “‘conventional,” control theory, namely, the theory that con-
sists of design methods based upon suitably shaping the transmission and
loop gain functions, employing pole-zero techniques. However, we do not
share such a disregard ; on the contrary, we believe that the classical approach
is well-established and proven by practice, and distinguishes itself by a col-
lection of sensible and useful goals and problem formulations.

This book attempts to reconcile modern linear control theory with classical
control theory. One of the major concerns of this text is to present design
methods, employing modern techniques, for obtaining control systems that
stand up to the requirements that have been so well developed in the classical
expositions of control theory. Therefore, among other things, an entire
chapter is devoted to a description of the analysis of control systems, mostly
following the classical lines of thought. In the later chapters of the book, in
which modern synthesis methods are developed, the chapter on analysis is
recurrently referred to. Furthermore, special attention is paid to subjects that
are standard in classical control theory but are frequently overlooked in
modern treatments, such as nonzero set point control systems, tracking
systems, and control systems that have to cope with constant disturbances.
Also, heavy emphasis is placed upon the stochastic nature of control problems
because the stochastic aspects are so essential.
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viii Preface

We believe that modern and classical control theory can very well be taught
simultaneously, since they cover different aspects of the same problems.
There is no inherent reason for teaching the classical theory first in under-
graduate courses and to defer the modern theory, particularly the stochastic
part of it, to graduate courses. In fact, we believe that a modern course
should be a blend of classical, modern, and stochastic control theory. This is
the approach followed in this book.

The book has been organized as follows. About half of the material,
containing most of the analysis and design methods, as well as a large number
of examples, is presented in unmarked sections. The finer points, such as
conditions for existence, detailed results concerning convergence to steady-
state solutions, and asymptotic properties, are dealt with in sections whose
titles have been marked with an asterisk. The unmarked sections have been so
written that they form a textbook for a two-semester first course on control
theory at the senior or first-year graduate level. The marked sections consist
of supplementary material of a more advanced nature. The control engineer
who is interested in applying the material will find most design methods in
the unmarked sections but may have to refer to the remaining sections for
more detailed information on difficult points.

The following background is assumed. The reader should have had a
first course on linear systems or linear circuits and should possess some
introductory knowledge of stochastic processes. It is also recommended that
the reader have some experience in digital computer programming and that he
have access to a computer. We do not believe that it is necessary for the
reader to have followed a course on classical control theory before studying
the material of this book.

A chapter-by-chapter description of the book follows.

In Chapter 1, “Elements of Linear System Theory,” the description of
linear systems in terms of their state is the starting point, while transfer matrix
and frequency response concepts are derived from the state description.
Topics important for the steady-state analysis of linear optimal systems are
carefully discussed. They are: controllability, stabilizability, reconstructibility,
detectability, and duality. The last two sections of this chapter are devoted to
a description of vector stochastic processes, with special emphasis on the
representation of stochastic processes as the outputs of linear differential
systems driven by white noise. In later chapters this material is extensively
employed.

Chapter 2, “Analysis of Control Systems,” gives a general description of
control problems. Furthermore, it includes a step-by-step analysis of the
various aspects of control system performance. Single-input single-output
and multivariable control systems are discussed in a unified framework by
the use of the concepts of mean square tracking error and mean square input.
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Chapter 3, “Optimal Linear State Feedback Control Systems,”” not only
presents the usual exposition of the linear optimal regulator problem but
also gives a rather complete survey of the steady-state properties of the
Riccati equation and the optimal regulator. It deals with the numerical
solution of Riccati equations and treats stochastic optimal regulators, optimal
tracking systems, and regulators with constant disturbances and nonzero
set points. As a special feature, the asymptotic properties of steady-state
control laws and the maximally achievable accuracy of regulators and track-
ing systems are discussed.

Chapter 4, ““Optimal Linear Reconstruction of the State,”” derives the
Kalman-Bucy filter starting with observer theory. Various special cases, such
as singular observer problems and problems with colored observation noise,
are also treated. The various steady-state and asymptotic properties of
optimal observers are reviewed.

In Chapter 5, ““Optimal Linear Output Feedback Control Systems,” the
state feedback controllers of Chapter 3 are connected to the observers of
Chapter 4. A heuristic and relatively simple proof of the separation principle
is presented based on the innovations concept, which is discussed in Chapter
4. Guidelines are given for the design of various types of output feedback
control systems, and a review of the design of reduced-order controllers is
included.

In Chapter 6, ““Linear Optimal Control Theory for Discrete-Time Systems,”
the entire theory of Chapters 1 through 5 is repeated in condensed form for
linear discrete-time control systems. Special attention is given to state dead-
beat and output deadbeat control systems, and to questions concerning the
synchronization of the measurements and the control actuation.

Throughout the book important concepts are introduced in definitions,
and the main results summarized in the form of theorems. Almost every
section concludes with one or more examples, many of which are numerical.
These examples serve to clarify the material of the text and, by their physical
significance, to emphasize the practical applicability of the results. Most
examples are continuations of earlier examples so that a specific problem is
developed over several sections or even chapters. Whenever numerical values
are used, care has been taken to designate the proper dimensions of the
various quantities. To this end, the SI system of units has been employed,
which is now being internationally accepted (see, e.g., Barrow, 1966; IEEE
Standards Committee, 1970). A complete review of the SI system can be
found in the Recommendations of the International Organization for Stand-
ardization (various dates).

The book contains about 50 problems. They can be divided into two
categories: elementary exercises, directly illustrating the material of the text;
and supplementary results, extending the material of the text. A few of the
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problems require the use of a digital computer. The problems marked with
an asterisk are not considered to belong to the fextbook material. Suitable
term projects could consist of writing and testing the computer subroutines
listed in Section 5.8.

Many references are quoted throughout the book, but no attempt has
been made to reach any degree of completeness or to do justice to history.
The fact that a particular publication is mentioned simply means that it has
been used by us as source material or that related material can be found in it.
The references are indicated by the author’s name, the year of publication,
and a letter indicating which publication is intended (e.g., Miller, 1971b).

HUuUIiBERT KWAKERNAAK
RAPHAEL SIVAN

Enschede, The Netherlands
Haifa, Israel
January 1972



ACKNOWLEDGMENTS

The first author wishes to express his thanks to the Department of Applied
Physics at the Delft University of Technology, where he worked until April,
1970, and to the Department of Applied Mathematics at the Twente Uni-
versity of Technology for invaluable support during the writing of this book
in terms of time granted and facilities made available. The second author
extends his thanks to the Technion, the Israel Institute of Technology, for
supporting the writing of the book. Time on the preparation of the manuscript
was spent by the second author while he was a National Research Council
Senior Research Associate at the NASA Langley Research Center, Hampton,
Virginia, during the academic year 1970-1971. Without the assistance of
these institutions, and their help in financing various trips to Israel, the
Netherlands, and the United States, it would not have been possible to
complete this book.

Several typists spent their efforts on the various versions of the manuscript.
Special mention should be made of the extremely diligent and competent
work of Miss Marja Genemans of Delft and Mrs. Dini Rengelink of Twente.
The line drawings were made by Mr. M. G. Langen of Delft, who is com-
mended for his accurate and careful work.

Final thanks are due to one of the first author’s former students, Mr. J. H.
van Schuppen, for his comments on the text and for programming and
working examples, and to Mr. R. C. W. Strijbos of Twente and Prof. J. van
de Vegte, Toronto, for their comments on early versions of the manuscript.
The final manuscript was read by Prof. L. Hasdorff of the Virginia Poly-
technic Institute and Dr. Paul Alper of Twente; their constructive criticism
and remarks are greatly appreciated. The second author is grateful to his
graduate students, in particular to Victor Shenkar, for helping to correct

early versions of the manuscript.
H. K.
R.S.

xi



NOTATION AND SYMBOLS

Chapters are subdivided into sections, which are numbered 1.1, 1.2, 1.3, and
so on. Sections may be divided into subsections, which are numbered 1.1.1,
1.1.2, and so on. Theorems, examples, figures, and similar features are
numbered consecutively within each chapter, prefixed by the chapter number.
The section number is usually given in parentheses if reference is made to an
item in another section.

Vectors are denoted by lowercase letters (such as « and ), matrices by
uppercase letters (such as 4 and B) and scalars by lower case Greek letters
(such as « and f). It has not been possible to adhere to these rules completely
consistently ; notable exceptions are ¢ for time, i and j for integers, and so on.
The components of vectors are denoted by lowercase Greek letters which
correspond as closely as possible to the Latin letter that denotes the vector;
thus the n-dimensional vector « has as components the scalars &, &, * - -, &,,
the m-dimensional vector y has as components the scalars 7y, 15, * * * , 7,5,
and so on. Boldface capitals indicate the Laplace or z-transform of the
corresponding lowercase time functions [X(s) for the Laplace transform of
2(t), Y(2) for the z-transform of y(i), etc.].

Operations
zr transpose of the vector =
col (&4, &5, -+ -, &) column vector with components &, &,,-- -, &,
(11> M2> * 5 1) row vector with components %y, 7,5, * - -, 1,
(xl) partitioning of a column vector into subvectors x,
, col (zy, @p)
s and =z,
1E4 norm of a vector z
dim (z) dimension of the vector «
AT transpose of the matrix A
A1 inverse of the square matrix A
tr (4) trace of the square matrix 4
det (4) determinant of the square matrix 4
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xxii Notation and Symbols

diag (A;, 4y, * -
(ela e2s T, en)

S
Je

Ju
(Th T2, “ i

U,
Ue

U,

m

(¢ 2)

dlag (Jla J29 e 7Jm)
M>0,M2>0

M>N,M>N

dx(t)
dt

%(t) or

FLHa(t)}
Re («)

Im (&)
min («, §)

min
a

max

a

diagonal matrix with diagonal entries 4;, 45, - -+, 4,
partitioning of a matrix into its columns e;, e, * - - , e,
partitioning of a matrix into its rows f3, f5, " " *, f,,

partitioning of a matrix into column blocks T3,
Ty, -, T,

partitioning of a matrix into row blocks Uy, U,, * * *,

m

partitioning of a matrix into blocks 4, B, C, and D

block diagonal matrix with diagonal blocks J,,
ST

the real symmetric or Hermitian matrix M is positive-
definite or nonnegative-definite, respectively

the real symmetric or Hermitian matrix M — N is
positive-definite or nonnegative-definite, respec-
tively

time derivative of the time-varying vector x(z)

Laplace transform of z(z)

real part of the complex number o
imaginary part of the complex number «
the smallest of the numbers « and f

the minimum with respect to «

the maximum with respect to «

Commonly used symbols

0
A(t), A(i), A

Zero; zero vector; zero matrix
plant matrix of a finite-dimensional linear differential
system



B(t), B(i), B

c@), C@), C

Ce(t)’ Ce(i)’ Ceoo
C(1), C (), Cop
D(t), D(i), D

e
e(t) or e(i)
€;

E
E(i)

F(), FG), F, F

G(s), G(z)
H(s), H(z)
i
I

J
J(5), J(2)
K(1), K(i), K, R

K(s)
Hy(s), H,(2)
n

N(s), N(z)

P

P(t), P(i), P
P(s), P(z)

Py

Q i,
2 ONONY

Qo

Q'(n), Q'()
r(2), (@)

Rl(t)’ Rl(l)s Rl
R2(t)’ R2(I)> R2

Notation and Symbols xxiii

input matrix of a finite-dimensional linear differential
system (B becomes b in the single-input case)

output matrix of a finite-dimensional linear differential
system; output matrix for the observed variable
(C becomes c in the single-output case)

mean square tracking or regulating error

mean square input

output matrix for the controlled variable (D becomes
d in the single-output case)

base of the natural logarithm

tracking or regulating error; reconstruction error

i-th characteristic vector

expectation operator

gain matrix of the direct link of a plant (Ch. 6 only)

frequency

regulator gain matrix (F becomes f'in the single-input
case)

controller transfer matrix (from y to —u)

plant transfer matrix (from u to y)

integer

unit matrix

—1; integer

return difference matrix or function

observer gain matrix (K becomes k in the single-
output case)

plant transfer matrix (from u to 2)

closed-loop transfer matrix

dimension of the state

transfer matrix or function from r to u in a control
system

controllability matrix

solution of the regulator Riccati equation

controller transfer matrix (from r to u)

terminal state weighting matrix

reconstructibility matrix

variance matrix; solution of the observer Riccati
eqhation

initial variance matrix

second-order moment matrix

reference variable

weighting matrix of the state

weighting matrix of the input



xxiv Notation and Symbols

R3(t)’ R3(l)’ R3

weighting matrix of the tracking of regulating error

Rv(tl’ t2)9 R'v(tl = tz): R'v(i$j)’ Rq;(l _])

s

S(s), S(z)

t

T(s) or T(z)
u(t), u(i)

v(?), v(i)

Um(t)’ DML(i)

Vo

o(2), vo(?)

Up(t)7 Up(i)

V@), V(i)

w(t), w(i)

W), W,(i), W,
w.(t), W), W,
(1), (i)

(1), £(7)

Lo
y(@), y(@)

2
2(1), z(i)
VA

(1)
A

8@, 8@
Z(t), (i)

2
(1), p(i)
(1), (i)

Vs
&), &()

P

Z,(w), Z,(6)
B(s), $(2)
¢G(s)’ ¢0(z)

covariance function of the stochastic process v

variable of the Laplace transform

sensitivity matrix or function

time

transmission

input variable

stochastic process

observation noise, measurement noise

constant disturbance

equivalent disturbance at the controlled variable

disturbance variable

intensity of a white noise process

white noise process

weighting matrix of the tracking or regulating error

weighting matrix of the input

state variable

reconstructed state variable

initial state

output variable; observed variable

z-transform variable

controlled variable

compound matrix of system and adjoint differential
equations

delta function

sampling interval

scalar controlled variable

scalar output variable; scalar observed variable

time difference; time constant; normalized angular
frequency

i-th characteristic value

scalar input variable

scalar stochastic process

i-th zero

scalar state variable

i-th pole

weighting coefficient of the integrated or mean square
input

spectral density matrix of the stochastic process v

characteristic polynomial

closed-loop characteristic polynomial



(D(t’ to)a (D(ls 10)

p(s), p(2)
w

ST units
A
Hz

kg
kmol

d

O<” g ZB

Notation and Symbols

transition matrix
numerator polynomial
angular frequency

ampere
hertz
kilogram
kilomole
meter
newton
radian
second
volt

ohm
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