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Preface

It gives me great pleasure to present the Special Issue of LNCS Transactions on
Computational Systems Biology devoted to considerably extended versions of selected
papers presented at the International Workshop on Bioinformatics Research and
Applications (IWBRA 2005). The IWBRA workshop was a part of the International
Conference on Computational Science (ICCS 2005) which took place in Emory
University, Atlanta, Georgia, USA, May 22-24, 2005. See http://www.cs.gsu.edu/pan/
iwbra.htm for more details.

The 10 papers selected for the special issue cover a wide range of bioinformatics
research. The first papers are devoted to problems in RNA structure prediction: Blin
et al. contribute to the arc-preserving subsequence problem and Liu et al. develop an
efficient search of pseudoknots. The coding schemes and structural alphabets for
protein structure prediction are discussed in the contributions of Lei and Dai, and
Zheng and Liu, respectively. Song et al. propose a novel technique for efficient
extraction of biomedical information. Nakhleh and Wang discuss introducing hybrid
speciation and horizontal gene transfer in phylogenetic networks. Practical algorithms
minimizing recombinations in pedigree phasing are proposed by Zhang et al. Kolli et
al. propose a new parallel implementation in OpenMP for finding the edit distance
between two signed gene permutations. The issue is concluded with two papers
devoted to bioinformatics problems that arise in DNA microarrays: improved tag set
design for universal tag arrays is suggested by Mandoiu et al. and a new method of
gene selection is discussed by Xu and Zhang.

I am deeply thankful to the organizer and co-chair of IWBRA 2005 Prof. Yi Pan
(Georgia State University). We were fortunate to have on the Program Committee the
following distinguished group of researchers:

Piotr Berman, Penn State University, USA

Paola Bonizzoni, Universita degli Studi di Milano-Bicocca, Italy
Liming Cai, University of Georgia, USA

Jake Yue Chen, Indiana University & Purdue University, USA
Bhaskar Dasgupta, University of Illinois at Chicago, USA
Juntao Guo, University of Georgia, USA

Tony Hu, Drexel University, USA

Bin Ma, University of West Ontario, Canada

lon Mandoiu, University of Connecticut, USA

Kayvan Najarian, University of North Carolina at Charlotte, USA
Giri Narasimhan, Florida International University, USA

Jun Ni, University of Iowa, USA

Mathew Palakal, Indiana University & Purdue University, USA
Pavel Pevzner, University of California at San Diego, USA



VI Preface

Gwenn Volkert, Kent State University, USA
Kaizhong Zhang, University of West Ontario, Canada
Wei-Mou Zheng, Chinese Academy of Sciences, China

June 2005 Alexander Zelikovsky
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What Makes the
ARC-PRESERVING SUBSEQUENCE Problem Hard?*

Guillaume Blin?, Guillaume Fertin', Romeo Rizzi?, and Stéphane Vialette3

1 LINA - FRE CNRS 2729 Université de Nantes,
2 rue de la Houssiniere BP 92208 44322 Nantes Cedex 3 - France
{blin, fertin}Quniv-nantes.fr
2 Universit degli Studi di Trento Facolt di Scienze - Dipartimento di Informatica e
Telecomunicazioni Via Sommarive, 14 - 138050 Povo - Trento (TN) - Italy
Romeo.RizziQunitn.it
3 LRI - UMR CNRS 8623 Faculté des Sciences d’Orsay, Université Paris-Sud
Bat 490, 91405 Orsay Cedex - France
vialette@lri.fr

Abstract. In molecular biology, RNA structure comparison and motif
search are of great interest for solving major problems such as phylogeny
reconstruction, prediction of molecule folding and identification of com-
mon functions. RNA structures can be represented by arc-annotated se-
quences (primary sequence along with arc annotations), and this paper
mainly focuses on the so-called arc-preserving subsequence (APS) prob-
lem where, given two arc-annotated sequences (S, P) and (T, Q), we are
asking whether (7', Q) can be obtained from (.S, P) by deleting some of its
bases (together with their incident arcs, if any). In previous studies, this
problem has been naturally divided into subproblems reflecting the in-
trinsic complexity of the arc structures. We show that APS(CROSSING,
PLAIN) is NP-complete, thereby answering an open problem posed in
[11]. Furthermore, to get more insight into where the actual border be-
tween the polynomial and the NP-complete cases lies, we refine the
classical subproblems of the APS problem in much the same way as
in [19] and prove that both APS({, (i}, ?) and APS({<, {},0) are NP-
complete. We end this paper by giving some new positive results, namely
showing that APS({(}, @) and APS({(},{{}) are polynomial time.

Keywords: RNA structures, Arc-Preserving Subsequence problem,
Computational complexity.

1 Introduction

At a molecular state, the understanding of biological mechanisms is subordinated
to the discovery and the study of RNA functions. Indeed, it is established that the

* This work was partially supported by the French-Italian PAI Galileo project number
08484VH and by the CNRS project ACI Masse de Données "NavGraphe”. A pre-
liminary version of this paper appeared in the Proc. of IWBRA’05, Springer, V.S.
Sunderam et al. (Eds.): ICCS 2005, LNCS 3515, pp. 860-868, 2005.

C. Priami, A. Zelikovsky (Eds.): Trans. on Comput. Syst. Biol. II, LNBI 3680, pp. 1-36, 2005.
(© Springer-Verlag Berlin Heidelberg 2005



2 G. Blin et al.

conformation of a single-stranded RNA molecule (a linear sequence composed of
ribonucleotides A, U, C and G, also called primary structure) partly determines
the function of the molecule. This conformation results from the folding process
due to local pairings between complementary bases (A—U and C—G, connected
by a hydrogen bond). The secondary structure of an RNA (a simplification of
the complex 3-dimensional folding of the sequence) is the collection of folding
patterns (stem, hairpin loop, bulge loop, internal loop, branch loop and pseudo-
knot) that occur in it.

RNA secondary structure comparison is important in many contexts,
such as:

— identification of highly conserved structures during evolution, non detectable
in the primary sequence which is often slightly preserved. These structures sug-
gest a significant common function for the studied RNA molecules [16,18,13,8],

— RNA classification of various species (phylogeny)[4,3,21],

— RNA folding prediction by considering a set of already known secondary
structures [24,14],

— identification of a consensus structure and consequently of a common role
for molecules [22,5].

Structure comparison for RNA has thus become a central computational
problem bearing many challenging computer science questions. At a theoret-
ical level, the RNA structure is often modeled as an arc-annotated sequence,
that is a pair (S, P) where S is the sequence of ribonucleotides and P rep-
resents the hydrogen bonds between pairs of elements of S. Different pattern
matching and motif search problems have been investigated in the context of
arc-annotated sequences among which we can mention the arc-preserving sub-
sequence (APS) problem, the EDIT DISTANCE problem, the arc-substructure
(AST) problem and the longest arc-preserving subsequence (LAPCS) problem
(see for instance [6,15,12,11,2]). For other related studies concerning algorithmic
aspects of (protein) structure comparison using contact maps, refer to [10,17).

In this paper, we focus on the arc-preserving subsequence (APS) problem:
given two arc-annotated sequences (S, P) and (7, @), this problem asks whether
(T, Q) can be exactly obtained from (S, P) by deleting some of its bases together
with their incident arcs, if any. This problem is commonly encountered when one
is searching for a given RNA pattern in an RNA database [12]. Moreover, from
a theoretical point of view, the APS problem can be seen as a restricted ver-
sion of the LAPCS problem, and hence has applications in the structural com-
parison of RNA and protein sequences [6,10,23]. The APS problem has been
extensively studied in the past few years [11,12,6]. Of course, different restric-
tions on arc-annotation alter the computational complexity of the APS problem,
and hence this problem has been naturally divided into subproblems reflecting
the complexity of the arc structure of both (S, P) and (T,Q): PLAIN, CHAIN,
NESTED, CROSSING or UNLIMITED (see Section 2 for details). All of them but
one have been classified as to whether they are polynomial time solvable or NP-
complete. The problem of the existence of a polynomial time algorithm for the
APS(CROSSING,PLAIN) problem was mentioned in [11] as the last open problem



What Makes the ARC-PRESERVING SUBSEQUENCE Problem Hard? 3

Table 1. APS problem complexity where n = |S| and m = |T|.  result from this
paper.

C APS ]
I

[ CrossING _|NEsTED] CHAIN |  Pramn___ ||
CROSSING[NP-complete [6]| NP-complete [12] |[NP-complete »
NESTED O(nm) [11]
CHAIN [O(nm) [11]] O(n +m) [11]

in the context of arc-preserving subsequences (cf. Table 1). Unfortunately, as we
shall prove in Section 4, the APS(CROSSING,PLAIN) problem is NP-complete
even for restricted special cases.

In analyzing the computational complexity of a problem, we are often trying
to define the precise boundary between the polynomial and the NP-complete
cases. Therefore, as another step towards establishing the precise complexity
landscape of the APS problem, it is of great interest to subdivide the existing
cases into more precise ones, that is to refine the classical complexity levels
of the APS problem, for determining more precisely what makes the problem
hard. For that purpose, we use the framework introduced by Vialette [19] in the
context of 2-intervals (a simple abstract structure for modelling RNA secondary
structures). As a consequence, the number of complexity levels rises from 4 (not
taking into account the UNLIMITED case) to 8, and all the entries of this new
complexity table need to be filled. Previous known results concerning the APS
problem, along with two NP-completeness and two polynomiality proofs, allow
us to fill all the entries of this new table, therefore determining what exactly
makes the APS problem hard.

The paper is organized as follows. In Section 2, we give notations and defi-
nitions concerning the APS problem. In Section 3 we introduce and explain the
new refinements of the complexity levels we are going to study. In Section 4,
we show that the APS({C, {},0) problem is NP-complete thereby proving that
the (classical) APS(CROSSING, PLAIN) problem is NP-complete as well. As
another refinement to that result, we prove that the APS({<,{},0) problem
is NP-complete. Finally, in Section 5, we give new polynomial time solvable
algorithms for restricted instances of the APS(CROSSING, PLAIN) problem.

2 Preliminaries

An RNA structure is commonly represented as an arc-annotated sequence (.5, P)
where S is the sequence of ribonucleotides (or bases) and P is the set of arcs
connecting pairs of bases in S. Let (S, P) and (T, Q) be two arc-annotated se-
quences such that |S| > |T'| (in the following, n = |S| and m = |T'|). The APS
problem asks whether (7', Q) can be exactly obtained from (S, P) by deleting
some of its bases together with their incident arcs, if any.
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Since the géneral problem is easily seen to be intractable [6], the arc structure
must be restricted. Evans [6] proposed four possible restrictions on P (resp. Q)
which were largely reused in the subsequent literature:

there is no base incident to more than one arc,
there are no arcs crossing,

there is no arc contained in another,

there is no arc.

0 o

These restrictions are used progressively and inclusively to produce five different
levels of allowed arc structure:

— UNLIMITED - the general problem with no restrictions
— CROSSING - restriction 1

NESTED - restrictions 1 and 2

CHAIN - restrictions 1, 2 and 3

PLAIN - restriction 4

Guo proved in [12] that the APS(CROSSING, CHAIN) problem is
NP-complete. Guo et al. observed in [11] that the NP-completeness of the
APS(CROSSING, CROSSING) and APS(UNLIMITED, PLAIN) easily follows from
results of Evans [6] concerning the LAPCS problem. Furthermore, they gave
a O(nm) time for the APS(NESTED, NESTED) problem. This algorithm can
be applied to easier problems such as APS(NESTED, CHAIN), APS(NESTED,
PLAIN), APS(CHAIN, CHAIN) and APS(CHAIN,PLAIN). Finally, Guo et al.
mentioned in [11] that APS(CHAIN, PLAIN) can be solved in O(n + m) time.
Until now, the question of the existence of an exact polynomial algorithm for
the problem APS(CROSSING, PLAIN) remained open. We will first show in the
present paper that the problem APS(CROSSING,PLAIN) is NP-complete. Table
1 surveys known and new results for various types of APS. Observe that the
UNLIMITED level has no restrictions, and hence is of limited interest in our study.
Consequently, from now on we will not be concerned anymore with that level.

3 Refinement of the APS Problem

In this section, we propose a refinement of the APS problem. We first state
formally our approach and explain why such a refinement is relevant for both
theoretical and experimental studies. We end the section by giving easy proper-
ties of the proposed refinement that will prove extremely useful in Section 5.

3.1 Splitting the Levels

As we will show in Section 4, the APS(CROSSING, PLAIN) problem is NP-
complete. That result answers the last open problem concerning the computa-
tional complexity of the APS problem with respect to classical complexity lev-
els, i.e., PLAIN, CHAIN, NESTED and CROSSING (cf. Table 1). However, we are
mainly interested in the elaboration of the precise border between NP-complete
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and polynomially solvable cases. Indeed, both theorists and practitioners might
naturally ask for more information concerning the hard cases of the APS prob-
lem in order to get valuable insight into what makes the problem difficult.

As a next step towards a better understanding of what makes the APS
problem hard, we propose to refine the models which are classically used for
classifying arc-annotated sequences. Our refinement consists in splitting those
models of arc-annotated sequences into more precise relations between arcs. For
example, such a refinement provides a general framework for investigating poly-
nomial time solvable and hard restricted instances of APS(CROSSING, PLAIN),
thereby refining in many ways Theorem 1 (see Section 5).

We use the three relations first introduced by Vialette [19,20] in the context
of 2-intervals (a simple abstract structure for modelling RNA secondary struc-
tures). Actually, his definition of 2-intervals could almost apply in this paper (the
main difference lies in the fact that Vialette used 2-intervals for representing sets
of contiguous arcs). Vialette defined three possible relations between 2-intervals
that can be used for arc-annotated sequences as well. They are the following: for
any two arcs p1 = (%,7) and po = (k,l) in P, we will write p; < poifi < j <k <!
(precedence relation), p1 T p2 if £ < i < j < I (nested relation) and p; {§ po if
i < k < j < (crossing relation). Two arcs p; and ps are 7-comparable for some
7 € {<,,{} if p17p2 or pa7p;. Let P be a set of arcs and R be a non-empty
subset of {<,Z, {j}. The set P is said to be R-comparable if any two distinct arcs
of P are T-comparable for some 7 € R. An arc-annotated sequence (S, P) is said
to be an R-arc-annotated sequence for some non-empty subset R of {<,Z, {} if
P is R-comparable. We will write R = @ in case P = ). Observe that our model
cannot deal with arc-annotated sequences which contain only one arc. However,
having only one arc or none can not really affect the computational complexity
of the problem. Just one guess reduces from one case to the other. Details are
omitted here.

As a straightforward illustration of the above definitions, classical complexity
levels for the APS problem can be expressed in terms of combinations of our
new relations: PLAIN is fully described by R = (), CHAIN is fully described by
R = {<}, NEsTED is fully described by R = {<,C} and CROSSING is fully
described by R = {<,,{}. The key point is to observe that our refinement
allows us to consider new structures for arc-annotated sequences, namely R =
{c}, R={(}, R={<,0} and R = {CZ, §}, which could not be considered using
the classical complexity levels. Although other refinements may be possible (in
particular well-suited for parameterized complexity analysis), we do believe that
such an approach allows a more precise analysis of the complexity of the APS
problem.

Of course one might object that some of these subdivisions are unlikely to
appear in RNA secondary structures. While this is true, it is also true that it is
of great interest to answer, at least partly, the following question: Where is the
precise boundary between the polynomial and the NP-complete cases? Indeed,
such a question is relevant for both theoretical and experimental studies.
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For one, many important optimization problems are known to be NP-complete.
That is, unless P = NP, there is no polynomial time algorithm that optimally solves
these on every input instance, and hence proving a problem to be NP-complete is
generally accepted as a proof of its difficulty. However the problem to be solved may
be much more specialized than the general one that was proved to be NP-complete.
Therefore, during the past three decades, many studies have been devoted to prov-
ing NP-completenessresults for highly restricted instances in order to precisely de-
fine the border between tractable and intractable problems. Our refinements have
thus to be seen as another step towards establishing the precise complexity land-
scape of the APS problem.

For another, it is worthwhile keeping in mind that intractability must be
coped with and problems must be solved in practical applications. Computer
science theory has articulated a few general programs for systematically coping
with the ubiquitous phenomena of computational intractability: average case
analysis, approximation algorithm, randomized algorithm and fixed parameter
complexity. Fully understanding where the boundary lies between efficiently solv-
able formulations and intractable ones is another important approach. Indeed,
from an engineering point of view for which the emphasis is on efficiency, that
precise boundary might be a good starting point for designing efficient heuris-
tics or for exploring fixed-parameter tractability. The better our understanding
of the problem, the better our ability in defining efficient algorithms for practical
applications.

3.2 Immediate Results

First, observe that, as in Table 1, we only have to consider cases of APS(R;,Rz)
where R; and R are compatible, i.e. Ry C R;. Indeed, if this is not the case, we
can immediately answer negatively since there exists two arcs in T which satisfy
a relation in Ry which is not in R;, and hence T simply cannot be obtained
from S by deleting bases of S. Those incompatible cases are simply denoted by
hatched areas in Table 2.

Table 2. Complexity results after refinement of the complexity levels. ////: incom-
patible cases. 7: open problems.

0 APS ]
[ fi<enfen] <o o] <o | © [ « R
{<.C,0}[INP-C [6]] 7 [NP-C[12]] 7 |[NP-C [12] 7 NP-C [12] 7
(=) T T 777/ 717777 7 7777 7
=3 T T /77T 7777 7 7
o) 77777777 7777 7
[{<CI 1 [OGrm) [L1[O(rm) [I[Otwm) [T Otam) (1] ]
Ty 1 [OGm) Tl 77/7 [ 0Gm) 1] ]
C = Otm) i[OG +m) L]
{ [} [O(n + m) [11_”
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Some known results allow us to fill many entries of the new complexity table
derived from our refinement. The remainder of this subsection is devoted to
detailing these first easy statements. We begin with an observation concerning
complexity propagation properties of the APS problems in our refined model.

Observation 1. Let Ry, Ra, R} and R} be four subsets of {<,C,(} such that
R, C Ry C R; and R, C R} C R:. If APS(R], R}) is NP-complete (resp.
APS(R;, Rz) is polynomial time solvable) then so is APS(R;, R2) (resp.
APS(R}, RY)).

On the positive side, Gramm et al. have shown that APS(NESTED, NESTED)
is solvable in O(nm) time [11]. Another way of stating this is to say that
APS({<,C}, {<,}) is solvable in O(mn) time. That result together with Ob-
servation 1 may be summarized by saying that APS(R,;, Rp) for any compatible
R; and R; such that (¢ R; and (¢ R, is polynomial time solvable.

Conversely, the NP-completeness of APS(CROSSING,CROSSING) has
been proved by Evans [6]. A simple reading shows that her proof is
concerned with {<, C, {j }-arc-annotated sequences, and hence she actually proved
that APS({<,,{}, {<,C,(}) is NP-complete. Similarly, in proving that
APS(CROsSING, CHAIN) is NP-complete [12], Guo actually proved that
APS({<, ,{}, {<}) is NP-complete. Note that according to Observation 1,
this latter result implies that APS({<,C,{}, {<,C}) and APS({<,C,{},
{<,{}) are NP-complete.

Table 2 surveys known and new results for various types of our refined APS
problem. Observe that this paper answers all questions concerning the APS
problem with respect to the new complexity levels.

4 Hardness Results

We show in this section that APS({C, (},0) is NP-complete thereby proving
that the (classical) APS(CROSSING, PLAIN) problem is NP-complete. That re-
sult answers an open problem posed in [11], which was also the last open problem
concerning the computational complexity of the APS problem with respect to
classical complexity levels, i.e., PLAIN, CHAIN, NESTED and CROSSING (cf. Ta-
ble 1). Furthermore, we prove that the APS({<, (},0) is NP-complete as well.

We provide a polynomial time reduction from the 3-SAT problem: Given a
set V,, of n variables and a set C, of ¢ clauses (each composed of three literals)
over V,, the problem asks to find a truth assignment for V, that satisfies all
clauses of Cg. It is well-known that the 3-SAT problem is NP-complete [9].

It is easily seen that the APS({C, {§},0) problem is in NP. The remainder of
the section is devoted to proving that it is also NP-hard. Let V,, = {z1,Z2,...Zn}
be a finite set of n variables and Cq; = {c1,¢2,...,¢4} a collection of ¢ clauses.
Observe that there is no loss of generality in assuming that, in each clause, the
literals are ordered from left to right, i.e., if ¢; = (z; Vg V @) then j < k <.
Let us first detail the construction of the sequences S and T':
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S=S3 A8 S5 A8 ...55 A8 Se Sep.. Se, SE, S, ... 82
T=T: TS . . TS Tey Toy... Te, T, T2, ... TE,

We now detail the subsequences that compose S and T'. Let v, (resp. )
be the number of occurrences of literal x,, (resp. Zr;) in C; and let k,, =
max(Ym, ¥m). For each variable z,, € V,, 1 < m < n, we construct words
Ss = ACkm, Si_ = C*mA and T§ = AC*™ A where C*n represents a word
of k‘m consecutive bases C. For each clause ¢; of Cg, 1 < i < ¢, we construct words
S.; = UGGGA and T,, = UGA. Finally, for each variable z,,, € V,, 1 <m < n,
we construct words Sg = UUA and Ty = UA.

Having disposed of the two sequences, we now turn to defining the corre-
sponding two arc structures (see Figure 1). In the following, Seq[i] will denote the
ith base of a sequence Seq and, for any 1 <m < n,lm = S5 Forall1l <m < n,
we create the two following arcs: (S;  [1],55 [1]) and (Sg—{im],S¢, [2]). For each
clause ¢; of Cq, 1 < i < g, and for each 1 < m < n, if the k® (i.e. 1%, 274 or
379) literal of c; is Ty, (resp. Zrm;) then we create an arc between any free (i.e.
not already incident to an arc) base C of Si_ (resp. S¢ ) and the k** base G
of S¢, (note that this is possible by definition of S5, S5 and S.,). On the
whole, the instance we have constructed is composed of 3¢ + 2n arcs. We denote
by APS-cP-construction any construction of this type. In the following, we will
distinguish arcs between bases A and U, denoted by AU-arcs, from arcs between
bases C' and G, denoted by CG-arcs. An illustration of an APS-CP-construction
is given in Figure 1. Clearly, our construction can be carried out in polyno-
mial time. Moreover, the result of such a construction is indeed an instance of
APS({C,{},0), since @ = @ (no arc is added to T') and P is a {, (j}-comparable
set (since there are no arcs {<}-comparable.

We begin by proving a canonicity lemma of an APS-CP-construction.

Lemma 1. Let (S, P) and (T, Q) be any two arc-annotated sequences obtained
from an APS-cp-construction. If (T, Q) can be obtained from (S, P) by deleting

Sy

‘_QSACA AClA(_CA ACCA!ZLAA CA UGGGA UijiA UZI;A UUA UUA 'JUA UUA (S, P)
lei 55182 I;'_;jr;;j 53154 I;'_x;‘ Sa [‘?:zﬂ r;ca‘T 5% 1 5%z 8%z | 5%,

N DOV B Y AT AR e T
ACA

ACA ACCA ACCA UGA UGA UGA UA UA UA UA T, Q

|| |
S

Fig. 1. Example of an APS-Cp-construction with Cq = (z2 VZ3V z4) A (z1 VX2 V3) A
(ZzV 3 V T7)



