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Preface

Metamaterials can be generally defined as a class of “artificial” media, possessing
extraordinary electromagnetic properties that cannot be found in natural ones. The
subject of metamaterials has drawn considerable attention from both the physics
and engineering communities worldwide and has received generous support from
the funding agencies during recent years. The popularity of this topic has been
adequately demonstrated by a rapid surge in the number of publications, special
sessions at international conferences, research networks, and launching of new
journals on the subject. Metamaterials are periodic electromagnetic structures that
are not altogether dissimilar from frequency selective surfaces (FSSs), bianisotropic
materials, and optical gratings, all of which have been around in the electromag-
netic and optical communities for quite some time. Although there has been much
hype recently about the extraordinary performance of devices containing metama-
terials, recent studies have indicated that there are a number of fundamental issues,
such as high losses and narrow bandwidth characteristics, that must be addressed
before these materials can find widespread use in practical applications. Never-
theless, the study of metamaterials has engendered, perhaps for the first time, a
widespread interest on the part of physicists, electronic engineers and material sci-
entists, in pursuing collaborative and multidisciplinary efforts, with the common
goal of developing an understanding of the fundamental physics of metamaterials,
which, in turn, has the potential of achieving new breakthroughs in science and
engineering. Research into metamaterials at Queen Mary College, London, was ini-
tiated in 2000 and has been supported by several grants from the United Kingdom’s
Engineering and Physical Science Research Council (EPSRC). A range of compu-
tational techniques, including the finite-difference time-domain (FDTD) method,
detailed in this book, have been developed for the modeling of metamaterials in-
cluding electromagnetic bandgap (EBG) structures; left-handed materials (LHMs);
artificial dielectrics; plasmonic waveguides; electromagnetic cloaking structures;
and, a number of other devices designed for related applications of metamaterials.
These computer codes have then been utilized for designing metamaterials and for
gaining a physical insight into their electromagnetic characteristics. The FDTD has
been widely accepted as one of the most efficient numerical techniques in com-
putational electromagnetics and has been applied to periodic structures including
the frequency selective surfaces (FSSs), which have previously found applications
mainly as high-performance radomes and spatial filters, but are now finding new
applications in metamaterial devices. The Electromagnetic Communication Labo-
ratory of Pennsylvania State University has been engaged in the development of
very high-performance computational electromagnetics (CEM) solvers capable of
handling upward of 10E+9 unknowns. The GEMS code developed in this lab has
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played a pivotal role in rigorously analyzing complex electromagnetic structures
with multiscale features that often characterize metamaterials.

This book introduces the basics of the FDTD method, especially when it is
used to model metamaterials. It shows how to compute the dispersion diagrams,
deal with the material dispersion properties, and verify the left-handedness, among
other things. Some metamaterials possess unique properties that require special
treatments in the numerical code when we analyze them. This book explains how
to properly define their material parameters and to characterize the interface of
metamaterial slabs and quantify their spatial as well as frequency dispersion char-
acteristics. There has been much recent interest in novel applications of metama-
terials to antennas and microwaves and to various devices that have applications
in optical engineering. In view of this, the book dedicates an entire chapter solely
to this topic. It is shown how these structures can be modeled by using either the
effective medium representation or the FDTD code. Though the latter is highly
computer-intensive, we have argued that modeling the physical structure numeri-
cally and rigorously is the only way to obtain reliable results when attempting
to predict the performance of metamaterial devices, because the rigorous results
often disagree with those derived by using simplified models based on the effective
medium approach. For this reason, we have devoted a substantial amount of space
in this book to modeling the problem of the physical structures of metamaterials,
instead of using their effective medium representations. In addition, we have ana-
lyzed the fundamental limits of metamaterials made from resonant particles, with
the hope that the readers will get a true picture of the real-world metamaterials
after going through these analyses. We view this book as a complement to a wide
array of publications on the FDTD method that have preceded it, and we hope
that colleagues in computational electromagnetics will benefit from recent advances
in numerical techniques, especially the FDTD, when dealing with the problem of
designing metamaterials.
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Introduction

1.1 What Are Electromagnetic Metamaterials?

There have been various definitions of electromagnetic metamaterials [1-114],
where “meta” is a prefix in English meaning “beyond; transcending; more com-
prehensive.” In 2001, Walser [1] from the University of Texas at Austin, coined
the term “metamaterial” to refer to artificial composites that “...achieve material
performance beyond the limitations of conventional composites.” The definition
was subsequently expanded by Browning and Wolf of Defense Advanced Research
Projects Agency (DARPA) in the context of the DARPA Metamaterials program
started also in 2001:

Metamaterials are a new class of ordered composites that exhibit exceptional
properties not readily observed in nature. These properties arise from qualitatively
new response functions that are: (1) not observed in the constituent materials and
(2) result from the inclusion of artificially fabricated, extrinsic, low dimensional
inhomogeneities.

Metamorphose, the European Network of Excellence [2], terms the metama-
terials as:

Artificial electromagnetic (multi-)functional materials engineered to satisfy the pre-
scribed requirements. Superior properties as compared to what can be found in
nature are often underlying in the spelling of metamaterial. These new properties
emerge due to specific interactions with electromagnetic fields or due to external
electrical control. The metamaterials provide a conceptually new range of radio,
microwave, and optical technologies.

Sometimes, metamaterials are specifically referred to as a class of artificial ma-
terials that have simultaneous negative permittivity and permeability and are also
known as left-handed materials (LHMs). Present researchers have a tendency to
expand the concept of metamaterials so as to make it as broad as possible. The
editorial board of IEICE Transactions |3] even questions whether or not artificial
materials such as CdS, GaAs, or InGaAs should have been classified as metamate-
rials. One popular classification of metamaterials is:

As an ordinary material is made of natural molecules, an artificial material is
made of artificial molecules. Due to Maxwell equations’ macroscopic property,
small particles made of typically metal and dielectric can be considered molecules
when put together. The variation of each shape and total alignment makes macro-
scopically single negative, double negative, or double positive materials.
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However, there exists a number of artificial electromagnetic structures, espe-
cially at microwave frequencies [e.g., electromagnetic crystals, high-impedance sur-
faces (HISs), and frequency selective surfaces (FSSs)]. Although these are made of
small ordered metallic/dielectric inclusions, they cannot be homogenized by using
conventional approaches and described in terms of constitutive parameters such as
permittivity and permeability. Smith [4] at Duke University prefers to use the term
metamaterials as artificial structures that display properties beyond those avail-
able in naturally occurring materials. This definition is a general one, and it may
also include artificial dielectrics, artificial magnetics, and bianisotropic materials,
which were the subject of extensive research back in the 1960s, 1970s, and 1990s.
Most of the concepts in metamaterials originate from solid state physics that deal
with the lattice structure of crystals, which is inherently periodic. Indeed periodic
structures in nature have fascinating characteristics, which have frequently inspired
scientists and engineers alike to think of novel applications of them. Periodic struc-
tures have had a long history in electromagnetics dating back to the 1900s, and
they can be found as integral parts of microwave filters, traveling wave tubes
(TWTs), antenna arrays, leaky wave antennas (LWAs), and FSSs, to name just a
few. The role of the periodic structure has been the manipulation of the spectral
and spatial spectrum, the selection of spatial harmonics to control the radiation of
forward and backward waves, and the control of the phase and group velocities
in slow wave structures. Periodic structures are also very popular among optical
engineers and are widely used in the design of lasers. For example, a distributed
Bragg reflector (DBR) is a structure composed of alternating layers of materials
with varying refractive indices, or with periodically varying characteristics, such as
height of a dielectric waveguide, which induces a periodic variation in the effective
refractive index of the guide. Each layer interface induces a partial reflection of
optical waves, at a wavelength for which many reflections undergo a constructive
interference, thereby forming a high-quality reflector. The idea has been further
extended to two and three dimensions by Yablonovitch [5] and John [6], who have
described structures that are now broadly classified as photonic bandgaps (PBGs).

Earlier work of Yablonovitch on PBGs was carried out at microwave fre-
quencies, by using a small dipole in a Fabry-Perot cavity formed by PBGs. They
conjectured that such configurations will give a rise to increased directivity of small
antennas by focusing their beam [5]. This has engendered new interests in the com-
munity of antenna and microwave engineering, and now the so-called electromag-
netic bandgap (EBG) structures (in contrast to the PBGs that are their counterparts
at optical frequencies) are finding usages in enhancing the performance of antennas
and microwave devices.

1.2 A Historical Overview of Electromagntic Metamaterials

Permittivity (&) and permeability (i) are two parameters used to characterize the
electric and magnetic properties of materials interacting with electromagnetic fields.
The permittivity is a measure of how much a medium changes to absorb electrical
energy when subjected to an electric field [7, 8]. It is defined as a ratio of D and
E, where D is the electric displacement by the medium and E is the electric field
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strength. The common term dielectric constant is the ratio of permittivity of the
material to that of free space (g9 = 8.85 * 107 12F/m). It is also termed as the rela-
tive permittivity. Permeability is a constant of proportionality that exists between
magnetic induction and magnetic field intensity. Free-space permeability ( o) is
approximately 1.257 x 107® H/m. Recently, Ziolkowski [9, 10] has categorized
metamaterials by their constitutive parameters as follows (Figure 1.1). Most of the
materials in nature have positive permittivity and permeability, and hence, they are
referred to as “double-positive (DPS)” media. In contrast, if both of these quan-
tities are negative, they are called “double-negative (DNG)” and are also referred
to as LHMs by others. Finally, materials with one negative parameter are named
“single-negative (SNG)” and are further classified into two subcategories, namely,
“epsilon-negative (ENG)” and “mu-negative (MNG).” Interestingly, natural ma-
terials such as cold plasma and silver exhibit negative permittivities at microwave
and optical frequencies, respectively, and ferromagnetic materials exhibit a nega-
tive permeability behavior in the VHF and UHF regimes. However, to date, no
materials that exhibit simultaneous negative permittivity and permeability have
been found in nature, and hence, they must be created artificially.

The first comprehensive review of the history of negative refraction and meta-
materials was given by Moroz [11]. He indicated that some of metamaterial re-
search started long before Veselago’s work and went back to as far as 1905, when
Lamb [12] suggested the existence of backward waves, which are associated with
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Figure 1.1 A diagram showing the possible domains of electromagnetic materials and wave re-
fraction or reflection directions based on the signs of permittivity and permeability. The arrows
represent wave vector directions in each medium. There is wave transmission only when both pa-
rameters have the same sign. Waves are refracted positively in conventional materials and negatively
in LHMs. (From: [10]. (© 2001 IEEE. Reprinted with permission.)



