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FOREWORD

To write a highly interesting book in a field in which there exists a rich
literature is certainly a difficult task. The present book fully realizes this
performance. Its success is due mainly to the great care with which the authors
selected the material included in the book, with the obvious aim of giving
the reader a deep and broad understanding of the subject.

While the main theorems are recent ones, the authors show very clearly
the strong connections of the theory with the classical results of Hurwitz,
Lyapunov, Nyquist, etc. Their reappraisal of the traditional engineering
methods of control theory—including the daring but often successful
technique of ‘““describing functions”—provides an opportunity to point out
another important source of the ideas that generated the contemporary
view of the problem. While developing the theory with care for rigor and
generality, the authors also show much concern for concrete examples and
often illustrate the general theory by significant and illuminative applications,
treated in detail.

These qualities make the book very useful even for persons who have
little or no previous knowledge of the subject. These people will find this
book an excellent introduction to the field. On the other hand, those already
familiar with the subject will find a detailed exposition of some of the most
advanced results which are harder to find elsewhere and which are due mainly
to the outstanding research done in the field by the authors themselves.

Books which successfully cover such a broad range of interests are rare.
They are also very much needed, because they are bound to produce a
favorable influence upon research.

V. M. Poprov
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PREFACE

This book presents some recent generalizations of the well-known Popov
solution to the absolute stability problem proposed by Lur’e and Postnikov
in 1944. The Popov frequency domain stability criterion and the results of
several earlier approaches to the Lur’e~Postnikov problem are presented in
detail in the excellent books of Lefschetz and of Aizerman and Gantmacher;
the work that led to the formulation of the absolute stability problem and
the first solutions to it are not considered here.

The success of Popov’s elegant criterion inspired many extensions of the
basic Lur’e-Postnikov problem. Studies of these related questions gave rise
to a great number of stability criteria, derived using both the direct method
of Lyapunov and the positive operator concept of functional analysis. The
great interest in this area has resulted in a continuing state of rapid develop-
ment. The generation of this type of frequency domain stability criteria has
now reached a relative state of completeness. It is also notable that the two
seemingly disparate analytic approaches have led to stability criteria that are
equivalent in most respects, and thus it is possible to present a unified picture
of the recent research in this area using only Lyapunov’s direct method. In
each of the two fundamental approaches there are several points of view
which have been used to good effect by various groups of researchers. It
should thus be noted that this book is founded on a single set of techniques
based on the direct method of Lyapunov and developed first at Harvard
University and then at Yale University and the Indian Institute of Science
(Bangalore, India). This makes the book rather specialized in its overall
scope, but the techniques are found to be applicable to a wide range of
important questions regarding the stability of nonlinear systems.
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X1V Preface

In view of the approach taken, several important results derived using a
functional analysis viewpoint have either been omitted entirely or only
mentioned in passing. Since the emphasis is on the application of Lyapunov’s
direct method to generate frequency domain criteria for stability, many fine
results related to other aspects of the stability problem are omitted. The
bibliography is by no means complete for this reason and contains only
works directly related to the problems discussed.

Continuous-time systems are considered here, although many similar
results already exist for discrete systems. In the first eight chapters, systems
with a single nonlinear function or time-varying parameter are treated.
Systems with multiple nonlinearities or time-varying gains are considered in
Chapter IX; some criteria are derived in detail while others are presented in
outline form as an indication of the state of current research.

This book can serve very well as a reference for research courses concern-
ing stability problems related to the absolute stability problem of Lur’e and
Postnikov. Engineers and applied mathematicians should also find the
results contained herein, particularly the geometric stability criteria, of use
in practical applications. Because of the diversity of the audience being
addressed, rigorous theory is developed with what we hope can be considered
a minimum of mathematical formalism. Certain sections contain some quite
condensed technical material required as a foundation for the derivations;
these may be omitted by those whose interest is limited to applications.

It is assumed that the reader is familiar with matrix operations that are
utilized in dealing with the state vector representation of dynamic systems.
All definitions and theorems are developed as needed so that the derivations
are independent of other works; some acquaintance with the basic concepts
of stability and Lyapunov’s direct method would be helpful. The historical
development of the work associated with the Lur’e-Postnikov problem has
been strongly linked to the theory of automatic control, so control systems
terminology is used sparingly wherever it is reasonable to expect that the
meaning is clear to all readers.
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SPECIAL NOTATION

Throughout this book the following symbol conventions are generally
adhered to:

(1)

(i)

(iii)

(iv)

v)

(vi)

Scalars are denoted by lower case Greek characters » 1,0, =
h™x + pr etc.). The principal exception is the independent variable
t (time).

Column vectors and explicit functions are denoted by lower case
Latin characters (x, 4; f(a,), etc.). The notation x = 0 signifies
that all elements x, of the vector are zero.

Matrices, transfer functions, function classes, function bounds, and
n-dimensional Euclidean spaces are denoted by capital Latin char-
acters (4 = [a,)]; G(5); f(o,) € {F}; K< k() < K; x € X). Upper
and lower bounds are distinguished by bars above and below,
respectively. 4 = 0 denotes the null matrix (a, ; =0, all i and j) and
I is the unit matrix (/ = diag (1, 1, ..., 1)).

Function ranges (as in (iii) above) may be specified by the notation
k(t) € [K, K]. A bracket indicates a closed interval, whereas a
parenthesis indicates an open interval. Thus k(z) € (0, K] signifies
that 0 < k(r) < K.

The transpose of a vector or matrix is designated by a superscript
T(x" =[xy, X5, ..., %,); 4" = [a,]), and the inverse of a non-
singular matrix is denoted by a superscript —1 (s — A)~1].

The notation G(s) € {Z,} denotes the membership of G(s) in some
class {Z} of transfer functions. In particular, {PR} is the class of
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(vii)

or
(viii)
(ix)
(x)
(xi)
(xii)

Special Notation

all positive real functions and {SPR} the class of all strictly positive
real functions (Chapter III, Section 5).

Systems may be classified as being

LTI (linear time-invariant)

LTV (linear time-varying)

NLTI (nonlinear time-invariant)

NLTV (nonlinear time-varying).

The complete notational designation of nonlinear time-varying
gain functions (g(g,, 2) € {G[N, T]}) is detailed in Chapter II, Sec-
tion 1.

The classes of matrices {4,} and {4,} are defined in Chapter II,
Section 1.

The superscript * denotes the complex conjugate of a scalar or the
complex conjugate transpose of a vector or matrix.

An open square ([]) indicates the end of a theorem, lemma, defini-
tion, or proof.

In all theorems and lemmas, Z(s)*! implies that either Z(s) or
Z~(s) can be used in satisfying the indicated condition.
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