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Preface

The purpose of this book is to provide an introduction to both the theoretical
and computational aspects of the finite element method for solving boundary
value problems for partial differential equations. It is written for advanced
undergraduates and graduates in the areas of numerical analysis, mathe-
matics, and computer science, as well as for theoretically inclined workers in
engineering and the physical sciences.

Finite element analysis arose essentially as a discipline for solving prob-
lems in structural engineering, and its role in that field is still of fundamental
importance today. It soon became clear, however, that the method had
implications far beyond those originally considered and that it in fact pre-
sented a very general and powerful technique for the numerical solution of
differential equations. This newer aspect of finite element analysis has been
intensively developed in recent years, with the result that at the present time
it is problably as important as the traditional engineering applications.

Because a great deal of material on the finite element method has been
published, the task of writing a textbook in this area requires basic decisions
regarding the choice of topics and depth of treatment. We have chosen to
limit the breadth of material severely, concentrating mainly on boundary
value problems of the linear, self-adjoint, second-order type. Even within
this framework we have made no attempt to be comprehensive. On the
other hand, the detailed treatment of the material presented should give the
reader sufficient background for reading much of the current literature.
Some of this material appears for the first time in book form.

The application of the finite element method to a boundary value problem
of the type described above yields a sparse, symmetric system of linear
algebraic equations, usually positive definite and often of very high order.
Solving such a system is a major computational task in itself, and an impor-
tant part of the book is devoted to methods for this purpose. One of the most
successful, the conjugate gradient method, is analyzed in Chapter 1. This
is an example of a minimization method. More specifically, we can associate
with a given N x N positive definite system

HX =b
the quadratic functional
f(x) =3xTHx — b"x, xe RN,

1X
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and show that

minf(x) = f(X).

xeRY
Thus, any numerical procedure that minimizes f is per se a method for
solving the above system, and this is the case of the conjugate gradient
method. In fact, we have chosen to begin the book with the conjugate
gradient method because the analysis of quadratic functionals of the above
type helps to prepare the reader for the less simple quadratic functionals
introduced in Chapters 2 and 3.

The effectiveness of the conjugate gradient method can be much improved
by the technique of preconditioning, a topic of current research. Chapter 1
deals with two important kinds of preconditioning, one based on the sym-
metric successive overrelaxation (SSOR) iterative method for solving a
system of equations and the other on a form of incomplete factorization.

Chapter 2 begins the discussion of boundary value problems. It is essen-
tially a review of the classical use of the calculus of variations to establish
that the solution of a boundary value problem often minimizes a quadratic
functional defined on an infinite-dimensional space of functions. In the
case of the simple problem

—[pu']) = r(x), a<x<b, u(a)=ulb)=0,

for example, such a functional is

b
flu) = j Bpw')?* — ru] dx, ueVv,

where V is the space of twice continuously differentiable functions vanishing
at the endpoints of the interval.

Chapter 3 is an elementary treatment of an advanced topic, namely, the
modern trend in boundary value problems with its emphasis on concepts
from functional analysis. In the case of the boundary value problem above,
for example, we shall see that V' can be enlarged to the Sobolev space
H! (a, b), which includes functions with discontinuous first-order derivatives.
This relaxation of the continuity requi’ement turns out to be of fundamental
importance for the finite element method.

Chapter 4 presents the Ritz method (and the closely related Galerkin
method), which minimizes the quadratic functional associated with a given
boundary value problem over some finite-dimensional subspace of the
original space of functions. By this process the problem of solving a linear
boundary value problem is replaced by the simpler problem of solving a
system of linear algebraic equations.

The Ritz (or Galerkin) method becomes the finite element method when
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the subspace of functions is taken to be the span of a set of finite element
basis functions, and this is the subject of Chapter 5. A finite element basis
function is a continuous, piecewise polynomial determined from a chosen
discretization (called a finite element mesh) of the boundary value problem’s
domain of definition. In problems with two space variables the elements
are usually triangles or rectangles. The success that the finite element method
has enjoyed is due in large part to the fact that there is great flexibility in
choosing the mesh, particularly when the elements are triangles. This flex-
ibility can be exploited if the domain has an irregular boundary or if the
solution is known to change more rapidly in one part of the domain than in
another.

A finite element basis function has local support, i.e., it vanishes every-
where outside of a small region in the domain. Because of this property the
Ritz—Galerkin system of equations is sparse and can be solved efficiently
by the methods described in Chapters 1, 6, and 7.

Chapter 6 is devoted to direct methods (i.e., Gaussian elimination and
related methods) for solving a system of linear algebraic equations. A direct
method, in contrast to an iterative method, modifies the coefficient matrix
in the course of the computation and, when the matrix is sparse, usually
introduces fill-in. In the case of finite element problems, both the details of
the computer implementation of a direct method and the amount of fill-in
produced are very much related to the ordering of nodes in the mesh. Thus,
much of the chapter is concerned with various strategies for ordering the
nodes and their corresponding computational features.

Chapter 7 continues the analysis of the preconditioned conjugate gradient
method begun in Chapter 1, concentrating on applications to finite element
problems. After an examination of SSOR preconditioning in this context,
a preconditioning based on a modified form of incomplete factorization that
is more robust than the unmodified version of Chapter 1 is presented.
The second half of the chapter includes techniques for reducing rounding
errors in the iterative solution of finite element equations, a discussion of the
relative merits of iterative and direct methods for solving such systems, and
an account of some recent multigrid methods. Much of the material of this
chapter is rather specialized, reflecting some of the directions of current
research.

A reading of the book need not follow the order in which topics are pre-
sented. In particular, because Gaussian elimination is central for precondi-
tioning by incomplete factorization, the reader, depending on his back-
ground, may prefer to read Sections 6.1 and 6.2 before reading the last part
of Chapter 1. He could also delay Chapter 1 until after Chapter 5 or 6.

How the reader chooses to divide his time between the theoretical and
computational parts of the book will be very much a matter of taste. Some,
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for example, may wish to skip over most of the mathematical details of
Chapters 2 and 3 and the last half of Chapter 5. In fact, much of the compu-
tational material could make independent reading.

Regarding computer implementation of the various methods presented,
listings of program code have been by and large avoided. On the other hand,
we have not hesitated to describe algorithms in an informal computer-
oriented language when convenient. In some cases, details of implementa-
tion have been left to the exercises. Considerable effort has been put into
providing a broad set of exercises covering most of the topics presented.

The reader’s background should include familiarity with linear algebra
and basic analysis. In particular, he should be acquainted with matrix and
vector norms and with the elementary properties of the eigenvalue problem
for symmetric matrices. Naturally, the more he knows about boundary
value problems for differential equations, the better.
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