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Preface

This book is intended for use in an introductory course in fluid mechanics.
The student is expected to have completed two years of college mathematics
and to be familiar with ordinary differential equations, partial differentiation,
multiple integrals, Taylor series, and the basic elements of vector analysis.

The book is based primarily on a common core fluid mechanics course
in which the author participated while at Northwestern University. There,
each department (with the exception of Electrical Engineering) offered
advanced undergraduate courses in fluid mechanics, and it was necessary
to provide a rigorous foundation in the common core course. The first
eight chapters are the result of experience in teaching that course. They
can be covered satisfactorily in approximately 40 lectures, and thus can be
used in either a three-unit semester course or a four-unit quarter course.

Chapters 9, 10, and 11 were added to provide flexibility for those persons
who may wish to use the book in a terminal course. Under these circum-
stances it may be necessary to delete some material in Chapters 1-8 ; however,
certain sections must be covered if subsequent material is to be understood.
These sections are marked with an asterisk.

Vector notation is used freely throughout the text, not because it leads to
elegance or rigor but simply because fundamental concepts are best expressed
in a form which attempts to connect them with reality.

A variety of people contributed in innumerable ways to the completion
of this text; they have the author’s thanks. Special appreciation is due
Professor John C. Slattery of Northwestern University, for the origin of the
text rests largely on an endless series of conversations with him regarding
the problems of teaching fluid mechanics to undergraduates.

Davis, California STEPHEN WHITAKER
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Nomenclature'

Roman Letters

a

acceleration vector (82)
cross-sectional area, portion
of a closed surface (33)
area of entrances and exits
214)

area of solid moving surfaces
(214)

area of solid fixed surfaces
(214)

characteristic area (287)

area of a closed surface fixed
in space (33)

area of an arbitrary closed
surface moving in space
(33)

area of a closed material
surface (33)

width (47)

arbitrary constant vector
(86)

€(i)

constant of
41

drag coefficient (304)

discharge coefficient (333)

contraction coefficient (334)

wave speed (372), velocity of
sound (399)

constant pressure heat ca-
pacity per unit mass (402)

constant volume heat ca-
pacity per unit mass (402)

tube diameter (5)

rate of strain tensor in Gibbs
notation (133)

rate of strain tensor in index
notation (133)

internal energy per unit mass
(392)

unit base vectors for rec-
tangular, Cartesian coor-
dinate system (26)

integration

1 Page number in parentheses indicates where the symbol is first defined.
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Xii
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o g

KE*

rate of viscous dissipation
(227)

specific energy (360)

friction factor (287)

drag force (286)

force vector (10)

gravity vector (34)

magnitude of gravity vector
(41)

gravitational constant (11)

fluid depth (43), enthalpy
per unit mass (394)

friction head loss (308)

minor head loss (308)

change in head caused by a
pump or turbine (308)

unit base vectors for rec-
tangular, Cartesian coor-
dinate system (24)

unit tensor (129)

thermal conductivity (404)

head loss coefficient (311)

characteristic kinetic energy
per unit volume (287)

length (47), Prandtl mixing
length (201)

length (42)

entrance length (171)

mass (402), Ostwald-de Wael
model parameter (20)

mass flow rate (265)

mass (10), Mach number
(403)

molecular weight (13)

number of moles (9),
Ostwald-de Wael model
parameter (20), Manning
roughness factor (352)

outwardly directed unit nor-
mal (35)

Reynolds number (5)

length  Reynolds
(431)

number

Pvp
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Nomenclature

Froude number (165)

cavitation number (22)

absolute pressure (38)

vapor pressure (22)

gauge pressure (45)

stagnation pressure (407)

ambient or atmospheric
pressure (43)

dimensionless pressure (160)

dimensionless pressure which
includes the body force
term (160)

volumetric flow rate per unit
width (67)

heat flux vector (392)

volumetric flow rate (61)

rate of heat transfer (392)

cylindrical coordinates (94)

spherical coordinates (94)

spatial position vector (76)

position vector locating the
center of stress (49)

material position vector
(76)

dimensionless radius (162),
gas constant (402)

hydraulic radius (159)

universal gas constant (402),
dimensionless ratio of like
quantities (162)

entropy per unit mass (397),
arc length (98)

wetted perimeter (351)

scalar function (93)

time (10)

stress vector (35)

net stress vector (257)

Bingham model yield stress
19)

absolute temperature (9)

stagnation temperature (407)

total stress tensor in Gibbs
notation (112)



Nomenclature

T, total stress tensor in index
notation (115)

a torque vector (48)

uy characteristic velocity (159)

u,, velocity far removed from an

immersed body (430)
fluid velocity vector (77)
U dimensionless fluid velocity
vector (160)

<

v, v,, Scalar components of v In
v, rectangular Cartesian co-

ordinates (24)

v magnitude of fluid velocity
vector (222)

vt dimensionless fluid velocity
(206)

v, relative fluid velocity vector
(156)

V volume (54)

v control volume fixed in space
(33)

¥ ,(t) arbitrary volume moving in
space (33)

¥ ,.(t) material volume (33)

w arbitrary velocity vector (79)

1% rate of work (227)

x,y, z rectangular, Cartesian coor-
dinates (24)

X,Y,Z dimensionless  rectangular,
Cartesian coordinates (164)

y* dimensionless distance (206)

Greek Letters

o direction cosine (118)

B coefficient of expansion (13)

Y specific gravity (55), ratio of
specific heats (402)

o boundary layer thickness (426)

0yj Kronecker delta (130)

e/D relative roughness (293)

" length (47)

0 angle (47)

® dimensionless time (160)

Xiii

K compressibility (13), bulk
coefficient of viscosity (133)

A wave length (374)

A unit tangent vector (99)

u shear coefficient of viscosity
(14)

Mapp  apparent viscosity (19)

Uo Bingham model viscosity
(19)

1t eddy viscosity (200)

kinematic viscosity (16)

3.1416. . .

p density (2)

a surface tension (21)

T viscous stress tensor in Gibbs
notation (130)

-

E ]

T viscous stress tensor in index
notation (130)

T turbulent stress tensor (194)

To wall shear stress (205)

¢ gravitational potential
function (40)

(] viscous dissipation function
(223)

y stream function (102)

w angular velocity (178)

w vorticity vector (152)

Q vorticity tensor in Gibbs
notation (152)

Q4 vorticity tensor in index nota-
tion (138)

Mathematical Symbols

\Y “del” vector operator (40)

\ve the Laplacian (154)

p— material derivative (78)

Dt

d L

— total derivative (77)

dr

d . . .

8_1 partial derivative (79)

() area or volume average (109)
— time average (187)
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Introduction I

This chapter is devoted to a brief discussion of the fundamental postulates
governing the motion of fluids, the types of flow that are to be investigated,
the physical properties of fluids, and vector notation. The first five sections
are qualitative and may be read quickly; however, Sec. 1.6 must be studied
carefully for we will draw upon that material throughout the remaining
chapters.

*¥|.1 The Continuum Postulate

The object of this text is to formulate the equations governing the motion
of a continuum and apply them to the problem of fluid motion. In treating
a fluid as a continuum we postulate that functions such as velocity, pressure,
density, etc. are continuous point functions. In actual fact this is not true,
for the materials we wish to study are made up of molecules. We may speak
of the velocity of a molecule with some assurance that this quantity is well
defined ; however, the velocity at a fixed location in space is rather meaningless
from the molecular point of view. We need not be concerned with this
dilemma, because the cases we wish to study represent a class of problems for
which the distance between molecules is so small that they represent a con-
tinuous system.
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The density of a fluid may be defined as
AM
= lim {— 1.1-1
P AV—»o(AV) ( )

where AM is the mass contained in a small volume AV. As defined by Eq.
1.1-1, the density p might be represented by the curve shown in Fig. 1.1-1.

AV

Fig. I.1-1. Density as a function of volume.

The volume AV* is the same order of magnitude as the cube of the mean free
patht for gases, and is comparable to the volume of a molecule for liquids.
For the continuum approach to hold, we must be dealing with systems that
have dimensions much larger than either the mean free path or the molecular
diameter. Since both these quantities are generally quite small, we can expect
satisfactory results for a great many practical situations. Two examples
where the continuum approach must be used with caution are the following:
the motion of a spacecraft through the upper atmosphere; the motion of a gas
through the pores of a catalyst pellet such as those currently used in petroleum
refining processes. In the first case, the pressure is very low; thus, the mean
free path of the gaseous molecules is large (on the order of 1 ft at 70 mi from

t The mean free path is the average distance traveled by molecules between collisions.
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the earth).! In the second case, the mean free path of the molecules may be
very small (on the order of 10~® cm), yet the pore size in the catalyst pellet
may also be extremely small and comparable to the mean free path.? In both
of these examples, the velocity is not a continuous function, and we consider
these to be cases of slip flow. We use the term *“slip flow”” because there is not
intimate contacting of the fluid molecules with the solid surfaces, and the
velocity of the fluid at the solid-fluid interface need not be zero.

*|.2 Types of Flow

We shall examine several types of flow in this text, and the boundaries
which divide them into various classes are not always clear. Some distinct
differences exist, however, and it will be helpful to discuss them.

Compressible and incompressible flow

Very often a fluid is considered incompressible if its density undergoes
“negligible”” changes for “appreciable” changes in temperature and pressure.
The words negligible and appreciable are rather vague, and they have meaning
only in terms of our experience. Thus, the density of water changes by less
than 5 per cent in 100°C and less than 1 per cent in 100 atm, and we are
inclined to consider water as incompressible. In actual fact water is taken to
be an incompressible fluid simply because the types of flows which generally
occur with water are satisfactorily treated by the incompressible form of the
equations of motion. However, if we heat a pan of water on the stove, we
note that circulation patterns are set up. They occur because warm water at
the bottom of the pan is less dense than the cooler water at the surface, and
buoyancy effects give rise to convective flows. Although it is the nonuniform
density of the fluid which causes the flow, such a flow is usually not termed
“compressible,” a term which general usage reserves for flows where the
fluid velocity approaches or exceeds sonic velocity (i.e., the speed of sound).
This situation is more likely to occur in gases where the sonic velocity is
about 1100 ft/sec at normal temperatures and pressures. The “sonic boom”
caused by high-speed jet aircraft is an obvious example of the rapid changes in
density (and pressure) that occur at a shock wave.

Sonic velocity in water is about 4700 ft/sec; thus, we might expect that
compressible flows are less likely to occur. However, the common phenomenon
of “water hammer” that occurs when a valve is suddenly closed in a water

1. E.J. Opik, Physics of Meteor Flight in the Atmosphere (New York: Interscience Pub-
lishers, Inc., 1958), p. 13.

2. P. Emmett, ed., Catalysis (New York: Reinhold Publishing Corp., 1955), Vol. 2,
p- 126.
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line is a case of compressible flow in liquids. The point here is that we must
consider whether a given flow may be treated as incompressible, not whether
the fluid is incompressible. Compressible flows are treated in Chap. 10.

Laminar and turbulent flow

The distinction between laminar and turbulent flows is somewhat easier
to make than the distinction between compressible and incompressible flows.

Fig.
from a burning cigarette.

1.2-1. Laminar and turbulent flow

Laminar flow is characterized by
smooth motion of one lamina of fluid
past another, while turbulent flow is
characterized by an irregular and
nearly random motion superimposed
on the main motion of the fluid. The
two types of flow can be observed in
the trail of smoke leaving the burning
cigarette shown in Fig. 1.2-1. The
smoke rises from the cigarette in a
smooth, laminar stream for perhaps
1 or 2 in.; however, at that point it
generally becomes unstable and a
transition to turbulent flow takes
place. This is characterized by whirls
and a more random motion of the
smoke stream as it rises into the air.

The transition from laminar to
turbulent flow in tubes was first
investigated by Osborne Reynolds,?
and a sketch of the apparatus used
by Reynolds is illustrated in Fig.
1.2-2. The system consisted essen-
tially of a bell-mouthed glass tube
into which a dye streak was injected
with the water that entered the tube
from a reservoir. Reynolds observed
two distinct types of flow. In the first,
the dye streak maintained its identity
and remained in the center of
the tube, although it spread slowly

3. O.Reynolds, “An Experimental Investigation of the Circumstances which Determine
whether the Motion of Water Shall be Direct or Sinuous and the Law of Resistance in
Parallel Channels.” Phil. Trans. Roy. Soc. (London) Ser. A, 1883, 174: 935.
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because of molecular diffusion. In the second, the dye streak was soon
dispersed throughout the tube when the laminar flow that existed at the
entrance of the tube underwent the transition to turbulent flow. The
dispersion of the dye streak is similar in some respects to the dispersion of
the thin stream of smoke given off by the cigarette. Reynolds found that the

Laminar flow

Turbulent flow

M

Fig. 1.2-2. Reynolds experimental investigation of the transition to
turbulence.

transition conditions could be correlated by a dimensionless group which is
now known as the Reynolds number, defined as follows.

_ plo)D
u

Nre (1.2-1)

where p = density
(v,) = average velocity in the z-direction
D = tube diameter
u = viscosity

Reynolds found that the transition took place for values of Ny, of about
2100, regardless of the specific values of p, (v,), D, and u. In Chap. 5, we will
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be able to prove that the Reynolds number is, indeed, the governing parameter
for the transition to turbulent flow.

The notation in Eq. 1.2-1 deserves some comment, for it will be used
consistently throughout the text. Dimensionless numbers or groups will
always be denoted by the letter N with a subscript appropriate to the name
of the number; area and volume averages will be denoted by angular brackets,
(); and the scalar components of a vector will be denoted by either an
alphabetical or a numerical subscript. Thus v, represents the scalar com-
ponent of v in the z-direction, and not the derivative of v with respect to z.
The latter interpretation is commonly encountered in mathematics texts, but
rarely found in books on mechanics.

Steady and unsteady flow

These two designations are fairly obvious, and we only need to clarify
their meaning in the case of turbulent flow. If a laminar flow is steady, the
three components of the velocity—v,, v,, and v,—and the pressure p are
independent of time ¢. Turbulent flows are naturally unsteady; however, we
shall refer to a turbulent flow as steady if the time-averaged components of
velocity and pressure—,, 9,, 7,, and p—are independent of time. A careful
treatment of the time-averaged equations of motion for turbulent flow appears
in Chap. 6.

One-dimensional flow

By one-dimensional flow we mean that the velocity v is a function of only
one spatial coordinate. One-dimensional turbulent flow, of course, implies
that the time-averaged velocity ¥ is a function of only one spatial coordinate.
The flow in the Reynolds’ apparatus is one-dimensional some distance down-
stream from the entrance (i.e., v is only a function of r), but at the entrance, v
is a function of r and z and the flow is two-dimensional. Often we approxi-
mate two- and three-dimensional flows by one-dimensional models, because
the velocity field is easily determined for a one-dimensional flow.

*] .3 The Solution of Flow Problems

In attempting to formulate the equations of fluid motion, we need a clear
understanding of the fundamental postulates governing this motion. The
student has already made use of Newton’s second law to solve problems in
statics and dynamics, and it would seem natural to include it as one of the



