
Nonlinearity and Chaos in Engineering Dynamics

J. M. T. THOMPSON S.R. BISHOP

TB 122-53 N813 1993

9561289

NONLINEARITY AND CHAOS IN ENGINEERING DYNAMICS

Edited by

J. M. T. Thompson S. R. Bishop

Centre for Nonlinear Dynamics, University College London, UK

JOHN WILEY & SONS Chichester · New York · Brisbane · Toronto · Singapore Copyright © 1994 by John Wiley & Sons Ltd,
Baffins Lane, Chichester,
West Sussex PO19 1UD, England
National Chichester (0243) 779777
International (+44) 243 779777

All rights reserved.

No part of this book may be reproduced by any means, or transmitted, or translated into a machine language without the written permission of the publisher.

Other Wiley Editorial Offices

John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, USA

Jacaranda Wiley Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Canada) Ltd, 22 Worcester Road, Rexdale, Ontario M9W 1L1, Canada

John Wiley & Sons (SEA) Pte Ltd, 37 Jalan Pemimpin #05-04, Block B, Union Industrial Building, Singapore 2057

Library of Congress Cataloging-in-Publication Data

IUTAM Symposium (1993:University College London)
Nonlinearity and chaos in engineering dynamics:IUTAM Symposium,
UCL, July 1993/edited by J. M. T. Thompson, S. R. Bishop.
p. cm.

Includes bibliographical references and index. ISBN 0-471-94458-0

- 1. Dynamics—Congresses. 2. Nonlinear theories—Congresses.
- 3. Chaotic behavior in systems—Congresses. I. Thompson, J. M. T.
- II. Bishop. S. R. III. Title.

TA352.I98 1993

620.1'04-dc20

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library ISBN 0 471 94458 0 $\,$

Typeset $10\frac{1}{2}/12$ pt Palatino by Thomson Press (India) Ltd, New Delhi Printed and bound in Great Britain by Bookcraft (Bath) Ltd.

NONLINEARITY AND CHAOS IN ENGINEERING DYNAMICS

PREFACE

Engineers and applied scientists are increasingly responding to the revolution in nonlinear dynamics which has uncovered the full complexity inherent in the equations of motion of macroscopic mechanical systems. The unpredictability implied by the chaotic motions and fractal basin boundaries of simple 'deterministic' systems is but one feature which nicely epitomizes the field. The ubiquitous new phenomena necessitate a change in emphasis away from the classical reliance on perturbation and averaging methods towards the use of computational techniques employing the powerful geometrical concepts developed by mathematicians.

This book gives a coherent overview of recent developments in the field, presenting in a structured fashion the latest research of leading international groups in theoretical and applied dynamics. Topics covered include: nonlinear problems of structural, mechanical, aerospace and naval engineering; topological and computer methods, cell mapping and global analysis; phenomenological studies of attractors, fractal basins, bifurcations and escape; control of chaos; experimental studies; piecewise-linear, stick—slip and impacting systems; time series analysis, phase-space reconstruction, parametric identification; dynamics of cables, beams and structures under fluid loading; stochastic bifurcation and resonance under random excitation.

Particular emphasis is given to recent developments in knot theory, which can identify bifurcational precedences in driven oscillators. New ideas are presented on the control and potential use of chaos; and on the phase-space reconstruction of time-series data. Discontinuous systems, including, for example, sliding friction or impacts, are another important and developing area of study that is strongly represented. Other contributions present important experimental verifications of theoretical concepts; and novel engineering applications related to vehicle dynamics and the chaotic motions of machine tools.

These research contributions were presented by their authors at a Symposium on *Nonlinearity and Chaos in Engineering Dynamics*, sponsored by the International Union of Theoretical and Applied Mechanics (IUTAM). This was held on 19–23 July 1993, at University College London. As with all specialist IUTAM symposia, invitations to attend, and to present papers, were made by a Scientific Committee which was constituted as follows: J. M. T. Thompson (Chairman), S. Al-Athel (Saudi Arabia), S. T. Ariaratnam (Canada), S. Arimoto (Japan), D. H. van Campen (Netherlands), F. L. Chernousko (Russia), C. S. Hsu (USA), F. C. Moon (USA), W. Schiehlen (Germany), S. W. Shaw (USA), W. Szemplińska-Stupnicka (Poland) and H. Troger (Austria). The Symposium brought together a wide spectrum of theoretical and applied dynamicists, 78 participants from 23 countries; and promoted a vigorous exchange of ideas. The extensive discussions helped to establish, consolidate and direct the emerging body of topological, analytical and computational expertise that is needed to address the challenging practical problems of engineering dynamics. The proceedings began with an

xiv Preface

Opening Address by Sir James Lighthill who was the President of IUTAM during his period as Provost of University College London; followed by the opening general lecture given by Philip Holmes of Cornell University. They ended with a comprehensive final discussion session which provided a valuable focus for identifying desirable developments and lines of future research.

Financial support for the Symposium was generously provided by IUTAM, and most major international publishers contributed to the display of scientific books and periodicals. The detailed organization was in the hands of the Local Steering Committee comprising the following researchers from the Centre for Nonlinear Dynamics and its Applications: S. R. Bishop (Chairman), M. E. Davies, S. Foale, P. G. Holborn, F. A. McRobie, J. Stark and J. M. T. Thompson. Thanks are also due to Derek Roberts, Provost of University College London, and to Jim Croll, Head of the Department of Civil and Environmental Engineering, for their encouragement and support; to Anne Power for her invaluable work on the local organization; and to Margaret Thompson for her cheerful and enthusiastic help with the social programme.

This book contains a specially written intoduction to the subject area (Chapter 1); the full texts of all the lectures presented at the Symposium; abstracts of the posters in Appendix I; the names and addresses of all participants in Appendix II; and a comprehensive index. We are pleased to have had it so efficiently and attractively produced by John Wiley & Sons Ltd.

Michael Thompson (Director)
Steven Bishop (Manager)

Centre for Nonlinear Dynamics and its Applications
Civil Engineering Building
University College London
Gower Street
London WC1E 6BT
UK

CONTENTS

Preface		xii	
1	Basic (Concepts of Nonlinear Dynamics	5
	J. M.	T. Thompson	
	1.1	Introduction	1
	1.2	Dynamical systems and the Poincaré section	1
	1.3	Divergence, dissipation and recurrent behaviour	2
	1.4	Point, periodic and quasi-periodic attractors	4
	1.5	Saddles and repellors	7
	1.6	Chaotic motion and its identification	7
	1.7	Fractals and their dimensions	9
	1.8	Basins and their boundaries	10
	1.9	Controls, structural stability and bifurcation	11
	1.10	Local bifurcations of equilibria and cycles	12
	1.11	Homoclinic and heteroclinic global bifurcations	13
	1.12	Bifurcational classification	17
		References	19
		PART I EXPERIMENTS	
2		Dynamics and Fractals in Material Removal Processes	25
	F. C. Ma		
		roduction	25
		ctals and material removal processes	27
		scription of experimental studies	28
		ctal dimension of phase-space attractor	31
		nlinear cutting dynamics models	32
	Ref	erences	36
3	A. H. Na	of Energy from High-Frequency to Low-Frequency Modes yfeh, S. A. Nayfeh, T. A. Anderson and B. Balachandran	39
		oduction	39
		periments on a parametrically excited cantilever beam	41
	3.3 Exp	eriments on an externally excited rod	45
	3.4 A p	paradigm for the transfer of energy from high-frequency to	
		-frequency modes	50
		ncluding remarks	57
	Ref	erences	57

vi Contents

4	Sta	bility Measurements in Nonlinear Mechanical Experiments	
		ided by Dynamical Systems Theory	59
	<i>P.</i> V	7. Bayly, L. N. Virgin, J. A. Gottwald and E. H. Dowell	
	4.1	Introduction	59
	4.2		60
	4.3	Characteristic multipliers of stable orbits near bifurcations	62
	4.4		66
	4.5		68
		References	69
5	Exp	perimental Observation of Basins of Attraction and Homoclinic	
	Bifu	urcation in a Magneto-Mechanical Oscillator	71
		Cusumano and B. W. Kimble	
	5.1	Introduction	71
	5.2	Description of the experimental system	73
	5.3	Experimental basins of attraction	75
	5.4	Evidence of homoclinic bifurcation	78
	5.5	Global damping estimates using Liouville's theorem	80
	5.6	Discussion and conclusions	83
		References	84
		PART II IMPACT AND FRICTION	
6	Bifu	arcations in Impact Oscillators: Theory and Experiments	91
		pale and S. R. Bishop	
	6.1	Introduction The investor will to the latest the second se	91
	6.2	The impact oscillator model	92
	6.3	Discontinuities in gradient from the COR model	92
	6.4	Grazing bifurcations	94
	6.5	Experimental investigations	96
	6.6 6.7	Frequency sweeps with no stop	97
	6.8	Frequency sweeps with impact	98
	0.0	Comparison of experimental and theoretical results References	99
		References	101
7	Stick	c–Slip Phenomena and Applications	103
		Glocker and F. Pfeiffer	
	7.1	Introduction	103
	7.2	Kinematics	104
	7.3	Constrained motion	105
	7.4	Contact laws	106
	7.5	Turbine blade damper	108
		Appendix A	110
		Appendix B	111
		References	112

Contents	vii

8	On Approximations of Non-Smooth Functions in Bifurcation Analysis	115
	W. Kleczka and E. Kreuzer	
	8.1 Approximation equations	115
	8.2 Calculation of partial derivatives	116
	8.3 Local bifurcation analysis	119
	8.4 Example: submerged double pendulum	121
	8.5 Conclusion	122
	References	123
9	Chaos and Bifurcations in a Multi-DOF Beam System with	
	Nonlinear Support	125
	R. H. B. Fey, E. L. B. van de Vorst, D. H. van Campen, A. de Kraker, G. J. Meijer and F. H. Assinck	
	9.1 Introduction	125
	9.2 Beam system supported by one-sided spring	126
	9.3 Single-degree-of-freedom model	126
	9.4 Four-degree-of-freedom model	128
	9.5 Experiments	138
	9.6 Conclusions	139
	References	139
	PART III CONTROL	
10	μ -Chaos in Digitally Controlled Mechanical Systems	143
	G. Stépán	
	10.1 Introduction	143
	10.2 Inverted pendulum	144
	10.3 Stability and nonlinear vibrations	146
	10.4 Experimental observations	148
	10.5 μ -chaos	150
	10.6 Life expectancy of μ -chaos 10.7 Conclusions	151
	References	153
	References	153
11	Controlling Chaos on Fractal Basin Boundaries Z. Kovács, K. G. Szabó and T. Tél	155
	11.1 Introduction	155
	11.2 Control of a simple map	156
	11.3 The driven damped pendulum	158
	11.4 Scaling properties	159
	11.5 Closing remarks	160
	References	160
12	The Control of Chaos by a Dynamical Absorber	142
	J. Brindley and T. Kapitaniak	163
	12.1 Introduction	163
	12.2 Controlling Duffing's oscillator	164
	_	

viii Conttents

	12.3 12.4		167 168 169
		PART IV ENGINEERING APPLICATIONS	10)
13		onlinear Dynamic Vibration Absorber for Rotating Machinery 7. Shaw and CT. Lee	173
	13.1	Introduction	173
	13.2	The basic system	175
	13.3	Perturbation analysis	177
		Numerical simulations	180
	13.5	Conclusions	182
		References	182
14		os in Railway-Vehicle Dynamics	183
	E. Sh 14.1	vsgaard and H. True Introduction	
	14.1	The mechanical model	183
	14.3	Method of investigation and results	184
	14.4	A comparison with the logistic map	185
	14.5	Conclusions	189 191
		References	191
15	Regu V. V.	llar and Chaotic Rotations of a Satellite in Sunlight Flux Beletsky and E. L. Starostin	193
	15.1	Introduction	193
	15.2	Model and equations	193
	15.3	Analysis of equations	195
	15.4	Poincaré mapping	199
		References	204
16	Dyna	mics and Chaos of Resonantly Excited Structures with Cyclic	
	Symn		205
	71. K.	Bajaj, S. Samaranayake and O. D. I. Nwokah Introduction	1
	16.2	The cyclic system and equations of motion	205
	16.3	Strongly coupled system	206
	16.4	Weakly coupled system	207
		References	212 213
17	Nonli	nearity and Chaos in the Finite Dynamics of Cable	
	Mode	ls	215
		edettini, G. Rega and A. Salvatori	-
	17.1	Introduction	215
	17.2 17.3	Bifurcation and chaos in a single-degree-of-freedom cable model Three-dimensional finite dynamics of multi-degree-of-freedom	216
		cable models	224

		Contents	ix
	17.4	Concluding remarks References	229 229
18		tic Oscillations of a Fluid-Conveying Viscoelastic Tube	231
		eindl and H. Troger	221
	18.1	Introduction Nach wind madel and equations of motion	231 232
	18.2 18.3	Mechanical model and equations of motion Static planar deformation of the fluid-conveying initially bent tube	234
	18.4		235
	18.5	Inertial manifold reduction	237
	18.6	The homoclinic orbit	238
	18.7	Conclusions	239
	10.7	References	239
19		agly Resonant Hopf Bifurcations and Vortex-Induced Vibrations	241
		Langford and K. Zhan Introduction	241
	19.1 19.2	Coupled oscillator models	243
	19.3	Non-semisimple 1:1 resonance	245
	19.4	The normal form for non-semisimple 1:1 resonance	247
	19.5	Conclusions	247
		References	247
		PART V RANDOM VIBRATION	
20	Stock	nastic Dynamics	251
	N. S.	Namachchivaya and M. M. Doyle	
	20.1	Introduction	251
	20.2	Stochastic stability	253
	20.3	Analysis of higher-order systems	257
	20.4	Bifurcations of nonlinear systems	261
	20.5	Conclusions References	263 264
21	Some	Illustrative Examples of Stochastic Bifurcation	267
		Ariaratnam	
	21.1	Introduction	267
	21.2	One-dimensional examples	268
	21.3	Two-dimensional example	271
	21.4	Conclusions	273
		References	274
22		astic Resonance	275
		Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, Soskin, N. D. Stein and N. G. Stocks	
	22.1	Introduction	275
	22.2	Linear response theory of stochastic resonance	276
	22.3		277

x Contents

	22.4	Stochastic resonance for periodic attractors	280
	22.5		281
	22.6		282
		References	283
23	Non	linear High-Frequency Vibrations of Complex Engineering Structures	285
		. Belyaev	
	23.1		285
	23.2	o j m a complex structure	286
	23.3	Mean field of high-frequency vibration	290
	23.4	Causes of spatial decay of high-frequency vibration	291
	23.5	Applications and conclusions References	292
		Kererences	294
		PART VI MATHEMATICAL TECHNIQUES	
24		tting within the Gluing Bifurcation	299
		olmes and R. Ghrist	
	24.1	Knots, templates and the topology of bifurcations	299
	24.2	The gluing bifurcation	302
	24.3 24.4	Topological classification of the real saddle Conclusion	304
	24.4	References	313
		References	313
25	Drive	en Oscillators, Knots, Braids and Nielsen-Thurston Theory	317
		McRobie and J. M. T. Thompson	
	25.1	Introduction	317
	25.2	Background theory	318
	25.3	Application to driven oscillators References	327
		References	328
26	A Ne	w Technique for Estimating the Dynamics in the Noise-Reduction	
	Probl	em	329
		Davies and J. Stark	
	26.1	Introduction	329
	26.2	A review of the Levenberg-Marquardt noise-reduction process	330
	26.3	An ad hoc approach to function approximation	332
	26.4	A more theoretical approach	332
	26.5 26.6	A comparison between the two approaches	334
	26.7	A numerical example Conclusion	337
	20.7	References	342
		References	343
27	Stabili	ity Numbers for Nonlinear Systems	345
	W. Sch		
		Introduction	345
		Equations of motion	346
	27.3	Stability numbers	346

Contents	X

	27.4	Applications to engineering dynamics	348
	27.5	Conclusion	352
	27.0	References	352
28	On A	analytical Estimates of Safe Impulsive Velocity in the Driven	
20		e Oscillator	353
		zemplińska-Stupnicka and J. Rudowski	
	28.1	Introduction	353
	28.2	Escape due to infinitesimal and large disturbance	356
	28.3	Discussion	361
	28.4	Concluding remarks	362
		References	362
29	Bifur	cation and Chaos of Coupled Systems by Fast Incremental	
	Harm	onic Balancing	365
	S. Na	rayanan and P. Sekar	
	29.1	Introduction	365
	29.2	Fast incremental harmonic balancing, Fourier-Galerkin-Newton	
		algorithm	366
	29.3	Stability analysis	368
	29.4	Systems with time delay	368
	29.5	Quasi-periodic solution	369
	29.6	Examples	370
	29.7	Conclusions	375
		References	375
		PART VII USES OF CHAOS	
30		ving and Utilizing Time-Series Observations from Chaotic Systems I. Abarbanel	379
		Introduction	379
	30.2	Lyapunov exponents	380
	30.3	Modelling chaotic systems	383
	30.4	An example from a chaotic laser system	384
	30.5	Cramer-Rao bounds	389
		References	391
31	Contr	ol and Use of Chaos	393
	C. Gr	ebogi and YC. Lai	
	31.1	Introduction: a one-dimensional example	393
	31.2	Two-dimensional algorithm	397
	31.3	Discussion	400
		References	401
	ENDIX		403
(F) (F) (F)	ENDIX		441
SYM	1POSIU	JM PHOTOGRAPH	446
Auth	Author Index 4		449
Subje	Subject Index 45		451

1 BASIC CONCEPTS OF NONLINEAR DYNAMICS

J. M. T. Thompson

1.1 INTRODUCTION

Like any new scientific discipline, the new geometrical theory of *nonlinear dynamics and chaos* has spawned a multitude of specialized concept and terminologies. These can be a major obstacle to applied scientists and engineers wishing to apply the powerful new methods in their own fields. To help overcome this, we provide here an overview that aims to highlight the central concepts and ideas that will be of particular importance in practical applications.

Recent books which the reader may find helpful are those of Guckenheimer and Holmes (1983), Thompson and Stewart (1986), Moon (1987), Arrowsmith and Place (1990) and Abraham and Shaw (1992). Collections of modern applications are edited by Schiehlen (1990), Thompson and Gray (1990), Kim and Stringer (1992), Thompson and Schiehlen (1992), and Mullin (1993).

1.2 DYNAMICAL SYSTEMS AND THE POINCARÉ SECTION

The general type of continuous dynamical system that will concern us here is described by an *autonomous* set of *n* first-order ordinary differential equations (ODEs),

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}) \tag{1}$$

giving a stationary vector field in the n-dimensional phase space, \mathbb{R}^n say, spanned by the components of vector \mathbf{x} . Non-autonomous equations, in which time, t, appears explicitly, can be rendered autonomous by identifying t as an extra phase coordinate governed by the dummy equation t = 1. A driven mechanical oscillator can be put into the required form by identifying the velocity as a second phase coordinate and the time as a third. In a typical phase space the vectors vary smoothly with position, and trajectories are everywhere tangent to them. This leads naturally to the *Euler* time integration scheme. For a small time step, Δt ,

we can write $\Delta x = f(x)\Delta t$ allowing us to make a small finite step from point i to the next point i+1 using

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \mathbf{f}(\mathbf{x}_i) \Delta t. \tag{2}$$

An improvement of this basic scheme is the *Runge–Kutta* method which uses an Euler-type prediction followed by corrections to achieve higher-order accuracy. The trajectories fill the phase space to form a *phase portrait*. In a dissipative system this portrait will show the structure of the attractors and basins, and is sometimes called the attractor–basin phase portrait.

A discrete dynamical system is described by the iterated map (or mapping),

$$\mathbf{x}_{i+1} = \mathbf{F}(\mathbf{x}_i). \tag{3}$$

The Euler time integration of a continuous system does, for example, generate a discrete system of this type. More globally, continuous dynamical systems on \mathbb{R}^n are formally reduced to a mapping of dimension n-1 by the use of a Poincaré section.

Such a section transverse to the flow of a continuous system on \mathbb{R}^n generates a Poincaré mapping on \mathbb{R}^{n-1} , taking a point in the surface of section to its image upon first return to the section. The value of such a mapping lies in the fact that it captures the (attractor-basin) dynamics of the system, and has the same general stability properties as the flow.

For a mechanical oscillator driven by a periodic excitation of period T, Poincaré sections can be defined, most simply, by the planes t = iT where $i = 1, 2, 3, \ldots$ This corresponds to the *stroboscopic sampling* of the velocity and displacement. It should be emphasized, however, that alternative Poincaré sections are often advantageous: in impacting systems, for example, it can be useful to work with the 2D impact map whose coordinates are the phase and velocity sampled at impact (Foale and Bishop, 1992).

The Poincaré mapping of a smooth continuous dynamical system will typically be a *diffeomorphism*, namely a smooth differentiable one-to-one mapping with a unique and smooth differentiable inverse.

1.3 DIVERGENCE, DISSIPATION AND RECURRENT BEHAVIOUR

The non-crossing trajectories of a continuous system give a fluid-like flow in the phase space. Writing the set of n first-order ODEs in scalar form as

$$\dot{x}_i = f_i(x_i) \tag{4}$$

we have the important scalar divergence,

$$\operatorname{div}(x_i) = \partial f_1 / \partial x_1 + \partial f_2 / \partial x_2 + \dots + \partial f_n / \partial x_n.$$
 (5)

The rate of change of a small volume, V, of the phase 'fluid' is given by

$$\dot{V}(t)/V(t) = \operatorname{div}(x_i). \tag{6}$$

The analogous result for the two-dimensional mapping

$$x_{i+1} = G(x_i, y_i), \quad y_{i+1} = H(x_i, y_i)$$
 (7)

gives us the ratio of small areas

$$A_{i+1}/A_i = D = (\partial G/\partial x)(\partial H/\partial y) - (\partial G/\partial y)(\partial H/\partial x)$$
(8)

where D is the Jacobian determinant.

A conservative, autonomous mechanical system with no energy dissipation is called a Hamiltonian system. Its equations of motion can be written in terms of the Hamiltonian function, \mathcal{H} , (numerically equal to the sum of the kinetic and potential energies) as

$$\dot{q}_i = \partial \mathcal{H}/\partial p_i, \quad \dot{p}_i = -\partial \mathcal{H}/\partial q_i \tag{9}$$

where q_i are the r generalized coordinates and p_i the generalized momenta. This canonical form shows immediately that a Hamiltonian system has an identically zero divergence function on \mathbb{R}^{2r} , this result being known as *Liouville's theorem*. The Hamiltonian flow is thus akin to that of an incompressible fluid. In the wider context of non-mechanical systems, not all systems with an identically zero divergence can be reduced to this classical canonical form: we can refer to these, more generally, as *volume-preserving* systems.

Dissipation of energy tends to give a negative divergence to the flow. Consider for example the driven oscillator

$$\ddot{x} + b(\dot{x}) + c(x) = F\sin(\omega t) \tag{10}$$

which we reduce to the first-order form

$$\dot{x} = y, \quad \dot{y} = -c(x) - b(y) + F\sin\theta, \quad \dot{\theta} = \omega$$
 (11)

to obtain for the (x, y, θ) phase space the divergence function

$$\operatorname{div}(x, y, \theta) = -\operatorname{d}b/\operatorname{d}y = -b_{\nu}(y). \tag{12}$$

We see that the divergence is just a function of y, and governed only by the dissipation function b(y): the sinusoidal forcing does not appear in it; nor does the restoring force, so that even in the vicinity of an unstable hilltop, with for example c(x) = -x, the sign of the divergence depends only on the form of b(y). The (x, y, θ) phase space of such a periodically driven oscillator can be usefully viewed in the toroidal space $\mathbb{R}^2 \times S^1$, product of the plane \mathbb{R}^2 and the circle S^1 .

We use the adjective dissipative to describe any system that does not have an identically zero divergence. Often a system so described will be totally dissipative, in the sense that the divergence function is everywhere negative. This would be the case with Duffing's equation, describing a driven oscillator with a cubic or polynomial restoring force, but with simple, positive linear damping corresponding to an energy sink. But we also encounter systems in which the phase space might have regimes of positive divergence, containing for example a repellor. This arises in the van der Pol equation of an oscillator with a nonlinear damping characteristic such that the autonomous system is capable of sustained self-excited oscillation in a limit cycle. The energy source for such behaviour is typically provided by a fluid flowing over an elastic structure. Similar results and subdivisions according to the divergence properties apply to iterated mappings, and we shall focus most of our attention on dissipative flows and maps.

In a phase space regime of negative divergence, a cloud or ensemble of starts will shrink asymptotically onto an attracting set of zero volume. Setting $div(x_i)$ equal to a constant, -k, in equation (6) gives, for example,

$$V(t) = V(0)\exp(-kt) \tag{13}$$

A typical start within this cloud will experience a *transient* before settling asymptotically onto a stable *steady-state* solution, called an *attractor*. Such a post-transient set can be a point attractor, a periodic or quasi-periodic attractor, or a chaotic attractor. Generically each attractor is entirely surrounded in phase space by its own basin of attraction. All transients initialized in a small neighbourhood around the attractor move back to it, making it *asymptotically stable* in the local sense of Lyapunov. All the above attractor types can appear alternatively as unstable steady states giving the saddles and repellors that we discuss later.

To distinguish these steady-state attractors, saddles and repellors from transients, geometrical dynamics uses the concept of a recurrent state. A particular state of a dynamical system is deemed recurrent if, after sufficient time, the system returns arbitrarily close to the state. The relaxation of the definition away from precise repetition is here used to embrace quasi-periodic and chaotic motion as recurrent. An ensemble of recurrent states linked together by a single trajectory constitutes recurrent behaviour. A further relaxation is to the non-wandering state which is one that has arbitrarily close states that return arbitrarily close. This generalization of a recurrent state (any recurrent state is non-wandering, but not vice versa) is needed to embrace a homoclinic orbit.

1.4 POINT, PERIODIC AND QUASI-PERIODIC ATTRACTORS

An equilibrium or fixed point, x_e , of (1) is characterized by

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}_e) = 0. \tag{14}$$

It can be stable or unstable, and is the first (trivial) form of recurrent behaviour. If it is asymptotically stable it is a *point attractor*.

A local stability analysis of any fixed point starts with the linearized equations describing small variations about the point. For a fixed point of a flow, stability hinges on the signs of the real parts of the eigenvalues. Typically the point will be hyperbolic (non-critical) with no zero real parts and we then have: the necessary and sufficient condition for stability is that all signs be negative; the necessary and sufficient condition for instability is that at least one sign be positive.

A fixed point of a flow (or map) that has all its linear eigenvalues in the stable or unstable domains is called *hyperbolic*. There are then no critical eigenvalues corresponding to neutral stability, and the phase portrait around the fixed point is structurally stable against perturbations of the system. (We should note that the term *hyperbolic point* is used differently in the literature on Hamiltonian systems to mean a saddle, near which trajectories follow a roughly hyperbolic shape.) Fixed points of a Hamiltonian system (or any volume-preserving system) can be at most neutrally stable with all local trajectories staying close, though not returning to, the point.

In the phase space of a flow, a closed orbit satisfying recurrence by returning precisely to its starting point after its periodic time *T*, is called a *periodic motion*. Such a motion (not