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Introduction

I cannot do it without comp[u]ters.

The Winter’s Tale (Shakespeare)

The computational legacy of precomputer era includes only a few mathema-
tical objects. Among them integers and polynomials hold a special position.

Many of our pencil and paper computations, but also those done by a pocket
calculator or a computer, require polynomial operations. Multiplication of large
integers, interpolation of functions, derivation and integration, matrix computa-
tions, integration of differential equations are all using polynomial computations.

The use of electronic computers has required a critical examination of com-
putational methods designed during the evolution of various branches of math-
ematics. These studies proved that, for various reasons (as the extremely large
running time or the impossibility of storage of too big data), some methods
could not be effectively implemented. Hence, the necessity of designing alterna-
tive algorithms avoiding these implementation problems became more and more
stringent. It stimulated researches on algorithmic procedures, leading to new
results and the emergence of new fields.

A careful analysis of various methods of polynomial algebra proves that al-
most everything done in the past is useful for current computational purposes.
Many algorithms developed during centuries of research can be easily imple-
mented and lead to efficient procedures. However, some classical algorithms were
proved to be very slow. Some of them were replaced by procedures that take up a
much less amount of time or memory, and others are still waiting for convenient
computational approaches.

The critical examination of the computational aspects of polynomials has led
to the revival of some subjects and the development of new topics. The compu-
tation of the greatest common divisor, the estimation of various sizes associated
with a polynomial, the factorization of polynomials with integer coefficients or
with coefficients in a finite field, the fast Fourier transform and the polynomial
interpolation are some of the topics intensively studied during the last decades.
Several classic algorithms were improved and faster methods were designed.



vi Introduction

In this textbook we will give a well-balanced presentation of classic proce-
dures which are computationally relevant and some algorithms discovered during
the last years. We left out on purpose several topics, for which an extensive lit-
erature is available, such as polynomials with real coefficients (P. Borwein, T.
Erdélyi [15], M. Mignotte [92]) and Grobner bases (T. Becker—V. Weispfenning
(10], W. W. Adams-P. Loustaunau [1].

The book is structured as follows. The first chapter discusses the construction
and the representation of polynomials. We present the basics on polynomial oper-
ations and we describe several fundamental algorithms: the polynomial division,
the greatest common divisor, polynomial roots, elimination theory, symmetric
functions, interpolation, irreducibility tests.

The second chapter is devoted to computational aspects of the analytic the-
ory of polynomials. We study the location of roots of univariate polynomials
with complex coefficients and we establish inequalities on the length, height,
norm, Bombieri’s norm and measure of polynomial factors. These inequalities
are crucial in polynomial factorization and root finding.

The third chapter focuses on polynomials with coefficients in a finite field. We
cover cyclotomic polynomials, the fast Fourier transform, irreducible polynomi-
als, polynomial roots and algorithms of factorization of univariate polynomials
over finite fields developed by Berlekamp and Niederreiter.

The final chapter, devoted to factorization of polynomials with integer co-
efficients, presents the methods of Schubert-Kronecker, Berlekamp-Zassenhaus
and Lenstra-Lenstra—Lovész.

The book is primarly aimed at graduate students. The prerequisites include
standard definitions in set theory, usual fields (rational, real and complex num-
bers) and basic algebra (elementary results on groups, rings, fields and linear
algebra). A rather important place is given to exercises, which are not always
direct applications of the main results. Many of them complement the main text,
helping the reader to check his understanding of key concepts and to put them
into practice. Fully worked out examples, hints and references will ease the pro-
cess of solving exercises. In addition, details concerning the implementation of
algorithms as well as indicators of their efficiency are usually provided.

All results in the book are numbered according to chapter and section. Defini-
tions and algorithms are not numbered, while examples and exercises are globally
numbered. Throughout the algorithms the delimitors oo mark a commentary.

The book is intended for use in a course on Polynomial Algebra; parts of it
can also be used as a supplementary text for courses on Scientific Computing
(sections 1.4, 1.5, 1.7, 2.2, 2.3, 2.4, 2.5, 2.7, 3.3, 3.6), Analysis of Algorithms
(sections 1.1, 1.2, 1.4, 3.3, 3.7, 3.8, 3.9, 4.1, 4.2, 4.3), Computational Polynomial
Factorization (sections 1.3, 1.8 and 2.6, chapters 3 and 4) and Computational
Geometry of Polynomials (sections 1.1, 1.2, 1.3, 1.5 and 1.6, chapter 2).

We are grateful to several people for their help in the preparation of this
book:

o To Attila Pethd (Debrecen), Mihai Cipu, Laurentiu Panaitopol (Bucharest),
Douglas Bridges (Hamilton), Cristian Calude, Garry Tee (Auckland), Karl Svozil
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(Vienna) for stimulating discussions on polynomials and computer algebra.

e To Cristian Calude for the invitation to publish this book in the DMTCS
series at Springer Verlag, Singapore and for useful suggestions relative to this
book.

e To Catalina Stefdnescu who read and commented an earlier version of this
text.

Parts of this book were taught by the authors at universities in Strasbourg,
Bucharest, Montreal, Auckland, Abidjan, Niamey, Cagliari, Debrecen, Wuhan,
Lanzho and Tienjin.

Maurice Mignotte, Doru Stefinescu
Strasbourg, Bucharest, Sicele
July 1998
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Chapter 1

An Introduction to
Polynomials

The last thing one knows when writing
a book is what to put first.

Pensées. (Pascal)

In this chapter we construct the polynomials and we discuss their repre-
sentation for computational purposes. Some basic concepts on algorithms and
on polynomial operations are presented. We describe fundamental constructions
and algorithms as polynomial division, the computation of the greatest common
divisor, polynomial roots, resultant computations, symmetric functions, polyno-
mial interpolation and irreducibility tests.

1.1 Construction and Representation of Polynomials

In this section we give a rigorous definition and we provide convenient repre-
sentations of polynomials. As it will be seen the representation of polynomials
for computational purposes corresponds to “classic” algebraic techniques. Both
abstract and computational polynomial approaches use the same concepts and
methods.

1.1.1 Construction of polynomials

Polynomials are defined as members of an overring of a base ring, called the
coefficient ring. It is sufficient to define polynomials in one variable, because
there exists an inductive procedure for several variables.



2 Chapter 1. An Introduction to Polynomials

Definition: Let A be a ring and consider the set S of sequences
{ao,al,...,ai,...}, a; €A

such that all but a finite number of a; are 0.

For P,Q € S,
P = {ag,04,...,0ai,...},

Q= {bo,b1,...,bi,...},
we define the addition
P+@Q = {ao+bo,a1 +b1,...,a; +b;,...}
and the multiplication
P-Q = {aobo,aobs + arbo,...,aibo + a;_1by + ...+ ai_sbs + ...+ aob;,...}.

The triplet (S,+,) is a ring. An element P in this ring is called a polynomial
in one variable (or indeterminate) with coefficients in A.

The polynomial defined by the sequence
X = {0,1,0,...,0,...}
is said to be a variable (or indeterminate) over A.
The ring of polynomials (S, +, ) is denoted by A[X].
Remark: Note that
X" ={o0,...,0,1,0,...,0,...}.
N
n times

Therefore
P=ag+aX+aX’+.. . +a,X".

Definition: Let P = {ag,a;,...} € A[X]. If all a; = 0, then P = 0 is the null
polynomial. If P # 0, let n € IN be minimal such that a,, # 0. Then n = deg(P)
is called the degree! of the polynomial P. The coefficient a,, is called the leading
coefficient of P and the term a, X" is called the leading term. If the ring A has
a unity and a, = 1, then P is called a monic polynomial.

In what follows we will use the notation: a,, = Ic(P), a, X™ = 1t(P).
Definition: Let P € A[X]. The function P defined by
13(04) =a+taa+t...+a,a" €A forall a€A,

is called the polynomial function associated with the polynomial P. Usually the
polynomial function P is also denoted by P.

!We use the convention deg(0) = —oo0.
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Remark: It may happen that two distinct polynomials from A[X] have as-
sociated the same function on A. For example, if the ring A is a finite set
{ai1,...,a,} and P,Q € A[X], with

P(X)Z(X_al)"'(X_an)) Q(X)ZO,
then P# Q, but P(a) =Q(a) =0 foralla € A.

Definition: Let A be an integral domain, P,Q € A[X], @ # 0. The quotient
P/Q is called a rational function in one variable over A. The set of all univariate
rational functions over A is denoted by A(X).
The integer
deg(P/Q) = deg(P) — deg(Q)

is called the degree of the rational function P/Q.

Definition: If B D A is an overring and b € B, set P(b) = ap +a1b+ ...+ a,b"
and note that P(b) € B. We say that P(b) is the result of substituting b for X in
the expression P(X) of P. In particular P = P(X) (we take B = A[X]). The
mapping P —— P(b) establishes a ring homomorphism A[X] — B.

We recall some basic properties of polynomials.

Lemma 1.1.1 If P,Q € A[X], then
deg(P + Q) < max{deg(P),deg(Q)},

deg(P - Q) < deg(P) + deg(Q).

Proposition 1.1.2 If A is a domain and P,Q are nonzero polynomials in A[X),
then

deg(P - Q) = deg(P) + deg(Q).

Note that, using the convention that —oo + a = —oo for all a < 0o, Proposition
1.1.2 is valid also if one of the polynomials is zero.

Remark: If A is a ring, the ring of polynomials in n indeterminates (variables)
over A is recursively defined by

(1) A[X1,. .o, Xno1, Xa] i= A[X, . .., Xno1][Xn],

where A[Xi,...,X,_1] is the coefficient ring.

An element P € A[X;,...,X,] is a polynomial in n variables (indetermi-
nates) with coefficients in the ring 4. Such a polynomial P is also called a
multivariate polynomial. If n = 2 it is called a bivariate polynomial.
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1.1.2 Representation of polynomials

n
There exist many ways of representing a polynomial P(X) = Za,-X ‘e AlX],
=0
but the most natural is the list representation
P = (ag,a1,...,a,),

where the entries are the coefficients of f. It corresponds to the original definition
of the polynomial P as a sequence with only a finite number of nonzero terms.

A variant of the list representation is
P = (X,n,an,...,a1,a9),

where n is the degree of P and a,,...,ao are the coefficients. In this represen-
tation the order of the coefficients is reversed.

Definition: A polynomial representation is called sparse if the null coefficients
are not explicitely represented. It is called dense if all the coefficients are men-
tioned, including those equal to zero.

Remark: The coefficients of a polynomial lie in a base ring and must be rec-
ognized by the machine. If the coefficients are integers, they are represented in
a convenient base B. Usually B is 2 or 10, but it may be larger if we want
to represent bigger integers. The same problem may happen if we deal with a
dense polynomial of a very large degree. The polynomial is then split into two
(or more) parts, each of them represented by a list which is an entry of another
list.

The sparse representation is particularly useful for multivariate polynomials.
Such polynomials have very few nonzero coefficients and it is convenient to store
only the exponents and the coefficients of the nonzero monomials.

A version of the sparse representation is the polygonal representation. It as-
sociates to the polynomial P(X) = Z a; X" the couples (¢, a;) for which a; # 0.

iel
Then P(X) is represented by the ordered list
P = (X,as,ms,...,a2,ma,a1,my),

where all the coefficients a; are nonzero and the exponents m; are in decreasing
order m, > ... > my > m;. Note that deg(P) = m,.
The null polynomial 0 is considered to be the empty list.

Remark: The sparse representation corresponds to Newton’s diagram? of P.
Both dense and sparse representations belong to classical approaches of polyno-
mials.

The sparse representation allows the storage of a polynomial with considerably
less space than in the case of a dense representation.

*The Newton diagram and Newton polygon will be considered in subsection 1.8.3.



