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STATISTICAL FUNCTIONS and FORMULAS

A Source of Simplified Derivations Based on
Elementary Mathematics




Foreword

Increasingly, professional people, students and teachers in the social and
managerial sciences are becoming dissatisfied with statistical texts and reference
works that give the important functions and formulas without deriving them.
Yet, when resort is had to sources that do provide derivations, the amount of
mathematical sophistication presumed is hopelessly beyond most people’s
background.

The present work derives the principal statistical functions and formulas in a
methodical, detailed and gap-free manner, tailored for those who have a back-
ground of elementary algebra and basic calculus. To this end, derivations are
presented in detail, providing the many intermediate steps that are disdained in
more mathematical texts; as a result the work can be comprehended readily and
quickly. The reader no longer needs to do his own mathematics to fill any gaps.

The advantages inherent in understanding derivations are considerable.
Formulas and functions are recognized in terms of their origins, and a deeper
appreciation of statistical theory, the rationale of its applications and the nature
of limitations in methodologies is gained.

Buddy L. Myers
Norbert L. Enrick
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Chapter 1

Summations

The process of taking a sum is a mathematical one, not specifically related
to probability and statistics. Nevertheless, it is fundamental to the derivation of
statistical functions.

SUMMATION OF DISCRETE DATA

Summation of discrete data represents the simplest type of addition process.
It is denoted by the symbol ¥ for “summation of” (a capital Greek sigma).
We may sum a number of constants or a number of variables, or a combination
of constant times variable. We also bring a few special commonly needed sums
which will be needed later in variance and regression analysis.

SUMMATION OF CONTINUOUS DATA

When a continuous variable is summed, we refer to the process as integration.
It is indeed from this point of view that the methods of the integral calculus
have evolved. There is of course still another aspect of equal importance, which
views integration as the process of finding an anti-derivative (the inverse of
differentiation). The symbol for integration is an elongated S, hence .

Integration is a limiting form of summation, as the intervals A between dis-
crete values x; shrink. Thus, for a function f(x) we have:

b n
f f(x)dx = limZ FGe) A x;
a i=1

n approaches infinity as the term involving delta goes towards zero. Hence,
f(x;)Ax; represents a series of quantities, each of which is a differential ex-
pression or element of a total quantity. The relationship shown is the basic
theorem of integral calculus. The fundamental theorem of calculus states that
differentiation of an indefinite integral F/ (x) at x yields f(x) at x.

SPECIAL PRODUCTS

A series of multiplications is shown by the symbol II, a capital Greek Pi.
When a product refers to a constant times a variable, the result is an expression
containing the constant raised to the appropriate power and multiplied by the
product of the variables.



2 ® Summations

SUMS OF SERIES

Certain sums of series are of special interest, since they are needed in the
derivation of some important statistical functions. Particularly significant in this
regard are (1) the sum of the first n positive integers and (2) the sum of the
squares of these integers. Other, more commonly known sums, will be found in
Appendix D.

SUMMARY

Although summation processes are in the domain of mathematics, certain
aspects of their application are of special interest in statistical -derivations. We
examine summations of both discrete and continuous data.

SUMMATION OF A CONSTANT, DISCRETE DATA

Formula: Zk =nk

where k is a constant, n represents the number of k’s and T represents the
simple addition of all the k’s.

In words: The sum of a number of constants equals the number of constants
times the value of the constant.

Derivation: We first assume that the n values of k;, withi=1,2,...,n, are
defined as shown below.

n
Zk,-=k1+k2+---+kn (1)
i=1
But if these values are the same, k is a constant, and
ky=k,=-=k,=k 2)

With all £’s alike, we no longer use subscripts to distinguish them. Sub-
stitution in (1) now yields:

Zk=k+kt+---+k (3)
Factoring out k, we obtain
n
Zk=k(1+1+---+1) 4)
i=1

There are n such values of unity in the parentheses. Hence,

Sk =nk o®)



Summation of a Constant Times a Variable, Discrete Data ® 3

SUMMATION OF A CONSTANT TIMES A VARIABLE,
DISCRETE DATA

n n
Formula: ka,- =k Zx,»
i=1 i=1

where k is a constant and n represents the number of values of the
variable x.

In words: The sum of a constant times a variable equals the constant times the
sum of the values of the variable.

Derivation: In terms of generally used definitions, the left-hand member of the
formula can be expressed as shown below:

n
ka,-=kx1 tkx, +-- - +kx, 1
i=1
The common element, k, of each term is now factored out.
=k(xy tx,+ 00+ xp) 2

Re-applying the aforementioned general definition

=k ix,. 3)
i=1

PRODUCT OF A SERIES OF CONSTANTS

Formula: Tk =k"
where & is a constant and n represents the number of constants.

In words: The product of a number of n constants equals the constant raised
to the nth power.

Derivation: The left-hand side of the formula is quite generally defined as shown
below:

n
Il ki=ks ks ...k, (1)
i=1

But if the various values are the same, k is a constant such that:

k=ki=ky= =k, @



4 ® Summations

Substitution in (1) yields:

lk=k-k-k...k 3)
Next, by a common rule of algebra,
Nk = k" 4

PRODUCT OF A CONSTANT TIMES A VARIABLE
n n
Formula: TT kx;=k" ] x;
i=1 i=1

where k is a constant, x a variable and n the number of values of the
variable.

In words: The product of a number, n, of values, each multiplied by the same

constant, is the constant raised to the nth power multiplied by the product
of the variables.

Derivation: The left-hand side of the formula is commonly defined as shown
below:

n
II kx;=kxy -kx, - ... kx, )
i=1

Since there are n constants, k, we can factor out k" giving:

Hkx,-=k"(x1'x2'...'x,,) (2)
i=1

Next, re-applying the definition in (1),

n n
Hkx,-=k"' Hx,-

i=1 i=1



Double and Triple Sums ® 5

DOUBLE -AND TRIPLE SUMS

Formula: Double and triple sums occur in the examples below:

Zazzb:(x,-j—f..)=0
i

a b ¢
ZZZ(xi]‘k—f...)=0
i j k&

General: The formulas state that the sum of the deviations, of individual

values, such as x;;, from their mean, X . . , is zero. We will check the state-

ment and, in the process, demonstrate operations involving double and
triple sums.

Derivations: We will examine the simple case:

3 - %)=0 0]
i=1

a
Where X . is the arithmetic mean, Z x;/a, of the x;’s.
i
From the definition of a sum of a constant, and transposing,

a

Z X; = ax. )

i=1
Dividing both sides by a,

a

D xila=% ©)

i=1

But by our definition of a mean, both sides of this equation are equal, thus
proving equation (1).

For a double sum,

ii(xu—f )=O (4)
i j
= Za: i:x,-,- - ab¥. )
i

where abx .. equals the double sum, thus demonstrating the validity of the
formula shown above.



6 ® Summations

Divide through by b and transpose.

Z(i x,~,-/b> = a¥. . (6)

i .

]

But the expression in parentheses is X; . , so that (6) becomes:
a
Z(Y,- )=dx.. (7
i
Now divide through by a, to obtain

) Fila)=%.. (8)

But the left-hand side of (8) is, by definition, X . ., thus both sides of the
equation are shown equal, thereby proving (4).

For a triple sum, we will merely indicate the sequence of equations. The
steps run parallel to the two prior cases, and no further explanations are
needed:

o R .
7

22> xy=abex ... (10)
3 Z(Zk: x,-,-k/c> =ab¥... (a1
TG

2.0 5y )=ab¥ .. | 12)
7

Z(Zfij/b> —a¥... 13)

Y

Zf,-../a=f... (14)

By definition of a mean, the left-hand side of (14) equals the right-hand
side. Equation (9) is thus proved out.



The Sum of a Special Product ® 7

THE SUM OF A SPECIAL PRODUCT

n n 1 n 2 n n-1 n

o 3.3 wixy= 3 | (0] 2] =8 3

i<j j i i i=1 j=it1

General: The formula shown will be quite valuable in future derivations, par-
ticularly for variance and regression analysis.

Derivations: We will use a simple case of i=1, 2, 3 and j = 1, 2, 3, from which
extensions to any magnitude (i=1,2,3,...,n;andj=1,2,3,. .. , h) are
apparent. For the three terms above, separated by equal signs, we will
demonstrate that each term gives identical results. Thus:

3 3 2 3
Do Do =) ) X 1)
L L .

i<j =1 j=2
FX1Xy TX1X3 tXX3 2)
Next,
3 5 o2
2 =1 =1
=(Y2) [(x1 + x5 +x3)* - (x} +x3 +x3)] 3
= (1) [(xT + %3 +x35 + 2,3, + 20425 + 2x,%3)
- (i +x3+x3)] 4)
=X1Xy tx1Xx3 tX5X3 (5)
which agrees with (2). Finally,
2 3
Zx,-x,-=x1x2 +x1x3 +X3x3 6)
=1 j=2

Thus, equation (2) = equation (5) = equation (6), thereby demonstrating
the identity of the three terms under “Formula” above.



8 ® Summations
a
THE SUM Zn,-()T,-.-/J)
i

a
Formula: Z n(x;. -p)=nx..-p
i
This formula pertains to analysis of variance, where (x;.) is the within-
group sample average, each group having a samiple size n;; such that
ny =n, =---=n, and hence (n;) (¢) = n. Here a represents the number of
sample averages used and u is the population (grand) mean.

Derivation: In the formula above, expand n;(x; .- p) to (n;x; .- n;u), giving
a a
|:Z nXi.- Z"iﬂ] 1
i i

But n; is a constant, as is 4. Hence

a

Z nip = (an)p = ny (2
Now,
in,-f,—.=(n13c“1 tn,x, ot ngx, ) 3)
=(ny +ny t...ng) [Z % ./a] )
i=1

But n=(n; +n, +...n,), hence (4) becomes n(x . .), where thex .. de-
notes an average of a values x;. Combine nu and n(x ..) to find:

a

Z n(x.-w)=n(x.)-nu=n(x..-p (5)

1

which proves out the summation formula.



Integral of a Constant ® 9

INTEGRAL OF A CONSTANT

Formula: [kdx =kx +c
where k and c are different constants, x is the independent variable (a de-
pendent variable y being assumed), the elongated S is an integration sign
without limits and dx is the differential of x.

In words: The integral of a constant is the constant times the independent
variable plus a further constant.
Derivation:  The left-hand side of the formula asks us to find a function of
x, f(x) =y, with the special property that its first differential is k.
We begin with
f)=y=kxtc ¢y

where the kx + ¢ is given in the formula.
The first derivative is:

, _dy d d d
=~ = — (kx+tc)= — (kx)+— 2
Y= S e r)= (o)t (@) @
But since the derivative of the constant ¢ is zero and the derivative of
kx isk,
d dy
e + — |
™ (kx + ¢) Ix k 3)

Multiplying through by dx
dy =d(kx + ¢) = kdx “4)
Integrating both sides
fdy = [d(kx + ¢) = [kdx = k[dx (5)
Thus the integral of kdx turns out, indeed, to be kx + c.
Also y, being the sum of all differentials, dy, is:

y = [kdx (6)

INTEGRAL OF A VARIABLE

Formula: [xdx =12 x> +¢
where x is the independent variable and c is a constant. The elongated S is
an integration sign without limits and dx is the differential of x.

In words: Not applicable.

Derivation:  The left-hand side of the formula asks us to find a function of



