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Foreword

For several decades, the mechanical behavior of materials has been described by
phenomenological constitutive relations in the general framework of the theory of
elasto-visco-plasticity. These approaches, when combined with numerical methods
(e.g., finite element methods), have led to very powerful tools — tools which
simulate boundary value problems in a reasonably realistic way, making them
relevant for real engineering problems.

However, this methodology has reached some limits, primarily because of the
great number of constitutive parameters to be determined, the recurrent difficulty in
simulating cyclic loading and limitations in predicting post-failure behavior. In
recognition of these basic limitations, methods based on the micromechanics of
heterogenous materials have been vigorously developed through so-called
homogenization techniques. Molecular dynamics also appeared as a very useful tool
to simulate the mechanical behavior of materials whose internal structure is easy to
identify.

This book is timely and relevant, addressing recent advances which take into
account the microstructure of materials. To that end, some chapters illustrate how it
is possible to improve phenomenological constitutive relations by incorporating
proper micromechanical ingredients, while others propose to build macroscopic
relations by using localization-homogenization methods and a local microscopic
relation, describing the interaction laws between the element grains or particles. Of
course these interaction laws are usually rather simple — if a proper scale has been
chosen — or at least well established. For these methods the most difficult step is
probably to build a localization (or projection) operator, essentially because the
solutions are not unique.
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Other chapters relate the application of continuum-based multi-scale methods to
metallic materials or geomaterials. New powerful methodologies for describing
anisotropy both at single crystal and aggregate level are presented.

Here also the mechanical parameters are very few, the local laws (grain level or
single crystal level) are quite simple and the derived macroscopic properties are
surprisingly realistic. Thus, the macroscopic behavior, which appears in experiments
as extremely complex, can be described with few mechanical ingredients. Hence,
this macro-complexity may be due to the great number of elements in interaction or
texture and not to an eventual micro-complexity. As in the case of molecular
dynamics, such continuum-based multi-scale methods allow the real world to be
rebuilt numerically.

Some essential difficulties appearing in a continuum mechanics framework (e.g.,
the description of an internal length) are solved in molecular dynamics in a very
natural and elegant way. On the other hand, the likely remaining difficulty is to take
into account a proper geometry for the element assembly.

With respect to practical problems, we now understand that it is essential to
consider materials in their own environment. From this perspective, describing
environmental coupling (as induced by chemo-thermo-hydro-mechanical
interactions) will be more and more important in the future. Several chapters
consider these “multi-physics” couplings.

From an engineering perspective, failure is always an essential question. An
efficient analysis framework is provided by the bifurcation theory. The existence of
bifurcated branches and the roles of imperfections and perturbations have been
investigated with success. Moreover, for non-associated materials (and all materials
whose behavior depends on the mean pressure seem to behave like this), the
existence of a large stress domain of bifurcations or of material/geometric
instabilities has now been established on firm theoretical, experimental and
numerical bases. Various failure modes are associated with these bifurcations, and
diffuse and localized failures are also discussed in several chapters.

Finally, another interesting facet of this book lies in the fact that a variety of
solid materials are considered — which is quite a rare feature today. Readers will be
interested in cross-linking the methods and tools developed to describe the
macroscopic properties of metallic materials and geomaterials from their very
different microscopic internal structures.

This book gathers together selected papers from the invited lectures presented
during the 1* US-France Symposium held 28-30 March 2007 at the University of
Florida in Shalimar, FL. It was locally organized by John “Row” Rogacki and Oana
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Chapter 1

Accounting for Plastic Strain Heterogenities
in Modeling Polycrystalline Plasticity:
Microstructure-based
Multi-laminate Approaches

1.1. Introduction

Models of the mechanical or physical behavior of materials are most efficient
when they are microstructure-based. However, reproducing reality is not achievable
and energy savings also demand models that do not become highly consumptive of
computer space and time. With the goal of bridging scales in models that start from
elementary atomistic models to simulate an overall response, the search for
compromises between the microstructural descriptions and the resulting simulation
accuracy will remain a challenging area for a long time. A smart alternative to
running huge “ab initioc” computational calculations is to anticipate which
microstructural features do really matter at the macro-scale concerned according to
the considered situation.

In the specific field of modeling the plastic behavior of heterogenous non-linear
metallic materials, effective properties are reasonably approached when
simultaneously considering i) a good enough description of the evolving
morphology, ii) an appropriate homogenization scheme according to the material
morphology and behavior type, iii) a relevant microstructural modeling of intra-
crystalline plasticity. In all these domains the last few decades have significantly

Chapter written by Patrick FRANCIOSI.
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enriched the available background. With regard to the third point, dislocation
dynamic simulations have clarified many features that concern crystal hardening
evolutions with strain [DEV 06], the anisotropy of which is one of the most
complex questions not yet answered, even for the simplest cubic structures. With
regard to the other two domains, enhanced morphological descriptions by
integrating n-point statistics with increasing n [TAL 97], as well as improved first-
and second-order developments to better describe the non-linearity of the phase
plastic behavior laws [PON 98] have enabled remarkable gains in the accuracy of
accessible behavior estimates or bounds. The possible further improvements in the
global modeling of polycrystalline plasticity discussed here address points that
concern in a combined manner the morphology description, the homogenization
framework and the behavior approximation in terms of plastic flow criterion. For
theoretical details and simulation examples relating to this book, see [FRA 07, FRA
08].

For such aggregates that deform by crystallographic shear mechanisms (i.e. slip,
twinning or also transformation plasticity up to a volume change), we first question
the granular description that is conventionally used, compared to an alternative
description in terms of grain boundary and sub-boundary orientation distribution.
Secondly, between the evolution of the sub-boundary spatial arrangement and the
shear activity in the material, a link is made that is based on a multi-laminate
approach of plastic heterogenities. Such a multi-laminate approach to describe the
current morphology of the strained material in turn acts on the homogenization
scheme that can be preferentially used. Comparing with the inclusion-based
modeling, further advantages are pointed out, as the more natural reference to an
equivalent homogenous super-crystal that justifies introducing a single plastic
potential for the whole aggregate, or the possibility of accounting for a grain size
effect. Section 1.2 illustrates some support to a sub-boundary based morphology
description of polycrystal plasticity, section 1.3 introduces the considered multi-
laminate representation and section 1.4 summarizes the proposed modeling
framework that results.

1.2. Polycrystal morphology in terms of grain and sub-grain boundaries
1.2.1. Some evidence of piece-wise regularity for grain boundaries

When looking at micrographic or nanographic pictures of metallic aggregates,
there is plenty of evidence that grains are polyhedral domains whose boundary
facets result from the elaboration route. Figure 1.1 shows two examples that concern
aggregates of micrometric (left) or nanometric (right) grains. On a topological
ground, it is also obvious that if, ideally speaking, all the grains were convex and
smooth — i.e. with rounded edges — some complementary matrix phase, of vanishing



