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Physics of Classical Electromagnetism



Preface

The Maxwell theory of electromagnetism was well established in the latter nine-
teenth century, when H. R. Hertz demonstrated the electromagnetic wave. The
theory laid the foundation for physical optics, from which the quantum concept
emerged for microscopic physics. Einstein realized that the speed of electromag-
netic propagation is a universal constant, and thereby recognized the Maxwell
equations to compose a fundamental law in all inertial systems of reference. On
the other hand, the pressing demand for efficient radar systems during WWII
accelerated studies on guided waves, resulting in today’s advanced telecommuni-
cation technology, in addition to a new radio- and microwave spectroscopy. The
studies were further extended to optical frequencies, and laser electronics and so-
phisticated semi-conducting devices are now familiar in daily life. Owing to these
advances, our knowledge of electromagnetic radiation has been significantly up-
graded beyond plane waves in free space. Nevertheless, in the learning process
the basic theory remains founded upon early empirical rules, and the traditional
teaching should therefore be modernized according to priorities in the modern era.

In spite of the fact that there are many books available on this well-established
theme, I was motivated to write this book, reviewing the laws in terms of contem-
porary knowledge in order to deal with modern applications. Here I followed two
basic guidelines. First, I considered electronic charge and spin as empirical in the -
description of electromagnetism. This is unlike the view of early physicists, who
considered these ideas hypothetical. Today we know they are factual, although
still unexplained from first principle. Second, the concept of “fields” should be in
the forefront of discussion, as introduced by Faraday. In these regards I benefited
from Professor Pohl’s textbook, Elektrizitdtslehre, where I found a very stimu-
lating approach. Owing a great deal to him, I was able to write my introductory
chapters in a rather untraditional way, an approach I have found very useful in
my classes. In addition, in this book I discussed microwave and laser electronics
in some depth, areas where coherent radiation plays a significant role for modern
telecommunication.

I wrote this book primarily for students at upper undergraduate levels, hoping
it would serve as a useful reference as well. I emphasized the physics of elec-
tromagnetism, leaving mathematical details to writers of books on “mathematical
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xii Preface

physics.” Thus, I did not include sections for “mathematical exercise,” but I hope
that readers will go through the mathematical details in the text to enhance their
understanding of the physical content.

In Chapter 21 quantum transitions are discussed to an extent that aims to make
it understandable intuitively, although here I deviated from classical theories.
Although this topic is necessary for a reader to deal with optical transitions, my
intent was to discuss the limits of Maxwell’s classical theory that arise from phase
coherency in electromagnetic radiation.

It is a great pleasure to thank my students and colleagues, who assisted me by
taking part in numerous discussions and criticisms. I have benefited especially by
comments from S. Jerzak of York University, who took time to read the first draft.
I am also grateful to J. Nauheimer who helped me find literature in the German
language. My appreciation goes also to Springer-Verlag for permission to use some
figures from R. W. Pohl’s book Elektrizitéitslehre.

Finally, I thank my wife Haruko for her encouragement during my writing,
‘without which this book could not have been completed.

M. Fujimoto
September 2006
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1
Steady Electric Currents

1.1. Introduction

The macroscopic electric charge on a body is determined from the quantity of
electricity carried by particles constituting the material. Although some electric
phenomena were familiar before discoveries of these particles, such an origin of
electricity came to our knowledge after numerous investigations of the structure
of matter. Unlike the mass that represents mechanical properties, two kinds of
electric charges different in sign were discovered in nature, signified by attractive
and repulsive interactions between charged bodies. While electric charges can be
combined as in algebraic addition, carrier particles tend to form neutral species in
equilibrium states of matter, corresponding to zero of the charge in macroscopic
scale.

Frictional electricity, for example, represents properties of rubbed bodies arising
from a structural change on the surfaces, which is unrelated to their masses. Also,
after Oersted’s discovery it was known that the magnetic field is related to moving
charges. It is well established that electricity and magnetism are not independent
phenomena, although they were believed to be so in early physics. Today, such
particles as electrons and atomic nuclei are known as basic elements composed
of masses and charges of materials, as substantiated in modern chemistry. The
electromagnetic nature of matter can therefore be attributed to these particles
within accuracies of modern measurements. In this context we can express the law
of electromagnetism more appropriately than following in the footsteps in early
physics.

Today, we are familiar with various sources of electricity besides by friction.
Batteries, for example, a modern version of Volta’s pile', are widely used in daily
life as sources of steady electric currents. Also familiar is alternating current (AC)
that can be produced when a mechanical work is converted to an induction current
in a magnetic field. Supported by contemporary chemistry, in all processes where

! Volta’s pile was constructed in multi-layers of Zn and Cu plates sandwiched alternately
with wet rags. Using such a battery, he was able to produce a relatively high emf for a weak
current by today’s standard.
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electricity is generated, we note that positive and negative charges are separated
from neutral matter at the expense of internal and external energies. Positive and
negative charges = Q are thus produced simultaneously in equal quantities, where
the rate dQ/dt, called the electric current, is a significant quantity for electrical
energies to be used for external work. Traditionally, the current source is charac-
terized by an electromotive force, or “emf,” to signify the driving force, which is
now expressed by the potential energy of the source.

Historically, Volta’s invention of an electric pile (ca. 1799) played an important
role in producing steady currents, which led Oersted and Ampere to discoveries of
the fundamental relation between current and magnetic fields (1820). In such early
experiments with primitive batteries, these pioneers found the law of the magnetic
field by using small compass needles placed near the current. Today, the magnetic
field can be measured with an “ammeter” that indicates an induced current. In
addition to the electron spin discovered much later, it is now well established that
charges in motion are responsible for magnetic fields, and all electrical quantities

" can be expressed in practical units of emf and current. As they are derived from
precision measurements, these units are most suitable for formulating the laws of
electromagnetism. ‘

On the other hand, energy is a universal concept in physics, and the unit “joule,”
expressed by J in the MKS system?, is conveniently related to practical electrical
units. In contrast, traditional CGS units basically contradict the modern view of
electricity, namely, that it is independent from mechanical properties of matter.

In classical physics, the electrical charge is a macroscopic quantity. Needless
to say, it is essential that such basic quantities be measurable with practical in-
struments such as the aforementioned ammeter and the voltmeter; although the
detailed construction of meters is not our primary concern in formulating the laws,
these instruments allow us to set the standard for currents and emf’s.

1.2. Standards for Electric Voltages and Current

Electric phenomena normally observed in the laboratory scale originate from the
gross behavior of electrons and ions in metallic conductors and electrolytic solu-
tions. It is important to realize that the electronic charge is the minimum quantity
of electricity in nature under normal circumstances®. The charge on an electron
has been measured to great accuracy: e = —(1.6021892 + 0.000029) x 10~'? C,
where C is the practical MKS unit “coul.”

2 MKS stands for meter-kilogram-second, representing basic units of length, mass, and
time, respectively. Electric units can be defined in any system in terms of these units for
mechanical quantities, however, in the MKSA system, the unit ampere for an electric current
is added as independent of mass and space-time. CGS units are centimeter, gram, and second,
representing mass and space-time similar to MKS system.

3 According to high-energy physics, charged particles bearing a fraction of the electronic
charge, such as e/2 and e/3, called “quarks” have been identified. However, these particles
are short-lived, and hence considered as insignificant for classical physics.
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In a battery, charges +Q and —Q are produced by internal chemical reactions
and accumulate at positive and negative electrodes separately. Placed between and
in contact with these electrodes, certain materials exhibit a variety of conducting
behaviors. Many materials can be classified into two categories: conductors and
insulators, although some exhibit a character between these two categories. Metals,
e.g., copper and silver, are typical conductors, whereas mica and various ceramics
are good insulators. Microscopically, these categories can be characterized by
the presence or absence of mobile electrons in materials, where mobile particles
are considered to be moved by charges +Q on the electrodes. As mentioned,
traditionally, such a driving force for mobile charges was called an electromotive
force and described as a force F proportional to Q, although differentiated from
a voltage difference defined for a battery. Mobile electrons in metals are by no
means “free,” but moved by F, drifting against an internal frictional force Fy4. For
drift motion at a steady rate, the condition F + F4 = 0 should be met, giving rise
to what is called a steady current.

For ionic conduction in electrolytic solutions, Faraday discovered the law of
electrolysis (1833), presenting his view of the ionic current. Figure 1.1 shows a
steady electrolysis in a dilute AgNOj3 solution, where a mass Mg of deposited
silver on the negative electrode is proportional to the amount of charge g transported
during a time ¢, that is,

Mpg x q. (L.1)

The mass Mag can be measured in precision in terms of molar number N of
Ag™, hence the transported charge g can be expressed by the number N that is
proportional to the time ¢ for the electrolysis.

FIGURE 1.1. Electrolysis of AgNO;
solution.
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With accurately measured Mg and ¢, the current / = g/t can be determined
in great precision. Using an electrolytic cell, a current that deposits 1.1180 mg of
silver per second is defined as one ampere (1A). Referring to the current of 1A,
the unit for a charge is called | coulomb, i.e., 1C = 1 A-sec.

To move a charge g through a connecting wire, the battery must supply an energy
W that should be proportional to g, and therefore we define the quantity V = W/q,
called the potential or electric potential. The MKS unit for W is J, so that the unit
of V can be specified by J-C~', which is called a “volt” and abbreviated as V.

In the MKS unit system the ampere (A) for a current is a fundamental unit,
whereas “volt” is a derived unit from ampere. Including A as an additional basic
unit, the unit system is referred to as the “MKSA system.” Nevertheless, acadmium
cell, for example, provides an excellent voltage standard: Vs = 1.9186 x 0.0010
V with excellent stability 1w V/yr under ambient conditions.

A practical passage of a current is called a circuit, connecting a battery and
another device with conducting wires. For a steady current that is time-independent,
we consider that each point along a circuit can be uniquely specified by an electric
potential, and a potential difference between two points is called voltage. The
potential V is a function of a point x along the circuit, and the potential difference
V(+) — V(—) between terminals + and — of a battery is equal to the emf voltage,
Vems. If batteries are removed from a circuit, there is, naturally, no current; the
potentials are equal at all points in the circuit—that is, V (x) = const in the absence
of currents.

1.3. Ohm Law’s and Heat Energy

Electric conduction takes place through conducting materials, constituting a major
subject for discussion in solid state physics. In the classical description we consider
only idealized conductors, either metallic or electrolytic. In the former electrons are
charge carriers, whereas in the latter both positive and negative ions are mobile,
contributing to the electrolytic current. These carriers can drift in two opposite
directions; however, the current is defined for expressing the amount of charges
| Q| transported per unit time, which is basically a scalar quantity, as will be
explained in the following discussion. In this context how to specify the current
direction is a matter of convenience. Normally, the current is considered to flow
in the direction for decreasing voltage, namely from a higher to a lower voltage.

Because it is invisible the current is “seen” by three major effects, of which
magnetic and chemical effects have already been discussed. The third effect is heat
produced by currents in a conducting passage, for which Ohm (1826) discovered
the basic law of electrical resistance. Joule (ca. 1845) showed later that heat
produced by a current is nothing but dissipated energy in a conductor.

Consider a long conducting wire of a uniform cross-sectional area S. Figure 1.2
illustrates a steady flow of electrons through a cylindrical passage, where we
consider a short cylindrical volume SAx between x — Ax and x along the wire.
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FIGURE 1.2. A simplified model for electronic conduction.

For a steady flow we can assume that the carrier density n is a constant of
time between these points, at which the corresponding times are ¢t — At and ¢,
respectively. If the potential is assumed to be higher to the left and lower to the
right, the current should flow from the left to the right, as indicated in the figure.
Assuming also that all electrons move in the direction parallel to the wire, the
amount of charge A Q = neSAx can be considered to move in and then out of the
volume SAx during the time interval At, where e < 0 is the negative electronic
charge. Therefore, the current is expressed as

AQ

Ax
] = — = _— = A
Ar neS A7 nevgS (1.2)

where vqg = Ax/At is the drift velocity of electrons. We can therefore write
I =jS, where j = neuvy, (1.3)

called the current density in the area S. It is noted from (1.3) that the sign of
J depends on the direction of vq. For negative electrons, e < 0, the current is
positive, / > 0, if v4 < 0. For an ionic conduction of positive and negative carri-
ers whose charges are e; > 0 and e; < 0, respectively, the equation (1.3) can be
generalized as

J =nieyv; + naexv, (1.4)

where both terms on the right give positive contributions to j, despite the fact that
ions 1 and 2 drift in opposite directions.

In the above simple model, the current density for a steady flow may not be
significant, but for a distributed current it is an important measure, as will be
discussed later for a general case. The MKSA unit of a current density is given by
[j/]=A-m™2 =C-m2s~!,

Next, we consider the potential difference between x — Ax and x, which is
responsible for the current through these points. For a small Ax, the potential
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difference AV can be calculated as
AV =V(x —Ax)—V(x)=—-FAx,

where the quantity F = —AV /Ax represents the driving force for a hypothetical
unit charge 1C. Nevertheless, there is inevitably a frictional force in the conducting
material, as can be described by Hooke’s law in mechanics, expressed by Fy =
—kvg, where k is an elastic constant.

For a steady current, we have F = — Fy, and therefore we can write

AV = FdAX = k’UdAX.

Eliminating vy from this expression and (1.2), we obtain

k
AV = ARI, where AR = (—) A%,
neS

the electrical resistance between x — Ax and x. For a uniform wire, this result
can be integrated to obtain the total resistance from the relation, that is,

B [k L E
—[ dV=V(A)—V(B)=vemf=—/ dy = BI.
A neS Jo '

where
kL
R=—
neS

L
S

is the resistance formula for a uniform conductor that can be calculated as the

length L and cross-sectional area S are specified. The constantp = — iscalled the

ne
resistivity, and its reciprocal 1/p = o is the conductivity of the material. Writing
a potential difference and resistance between two arbitrary points as AV and R,
Ohm’s law can be expressed as

AV =RI. (1.6)

Obviously, the current occurs if there is a potential difference in a circuit. That
is, if no current is present the conductor is static and characterized by a constant
potential at all points. Values of p listed in Tables 1.1 and 1.2 are for representative
industrial materials useful for calculating resistances.

The current loses its energy when flowing through a conducting material, as
evidenced by the produced heat. Therefore, to maintain a steady current, the con-
nected battery should keep producing charges at the expense of stored energy in
the battery. Although obvious by what we know today, the energy relation for heat
generation was first verified by Joule (ca. 1845), who demonstrated equivalence
of heat and energy.

Figure 1.3 shows Joule’s experimental setup. To flow a current / through the
resistor R, a battery of V¢ performs work. The work to drive a charge A Q out
of the battery is expressed by AW = V,sAQ, and hence we can write AW =
(RNHA Q, using Ohm’s law.



