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PREFACE

This book on Fluid Dynamics has been written to cater to the
requirements of students studying Fluid Dynamics, Hydro Dynamics
or Hydro Mechanics at Post-graduate and Honours standard of all
Indian Universities. A large number of articles and problems
have been done with the help of Vector Algebra and Vector Cal-
culus. Problems have been selected from standard text books and
examination papers of various universities. Students and teachers
will find that the subject has been dealtin a lucid and clear
style. Enough care has been taken to prevent mistakes and prin-
ting errors creeping in, but it is not possible to claim complete
immunization. It shall be our pleasure to gratefully acknowledge
any suggestions or pointing of errors from teachers and students
of the subject.

We are grateful to Shri K. K. Mittal Proprietor M/s Pragati
Prakashan and Shri J. P. Rastogi Proprietor Naveen Press, N eerut
for the pains they have taken in bringing out the book.

Kanpur J. K. Goyal
April 1980 and K. P. Gupta
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Chapter 0

SOME PRELIMINARIES,
IMPORTANT FORMULAE

Group A—Results of Vector Analysis

Vectors. Bold face type is used to denote vector and italic
letter to denote the magnitude of the vector. For example ais
the magnitude of the vector a.

(1) If r be the position vector of a current point P (x, y, z),

then r=xi+yj+zk, wherei, j, k are unit vectors along x, y, z
axes respectively.

(2) A vector of magnitude one is called unit vector.
(3) Let a=mi+tazj+ask, b=bii+bsj+bsk. Then
a2=a12+ as?-}-as?, h2=>5b12+ ba*+ bs2,
a.b=ai1b:+a2b2+aszbs,

i ] k
axb=| aa a: az |. Also aXb=n ab sin 0,
a.b=ab cos 0
by b: b3

where 6 is the angle between a and b ; and n is a unit vector per-
pendicular to the plane containing a and b.

.0 ™ 9 0
4) V=i a—+] 5.'})4'1( 5 grad ¢=V¢
diva=V a_a_m+3a2+8aa

dy oz
i

Qo =
:Q.-’lco =

curl a=V xa=| —
ox

ai az as
curl (pa)=¢ curl a+(grad ¢)Xa
div (da)=4¢ div a+(grad ¢).a
div (axb)=becurl a—a.curl b
curl (axb)=a div b—b div a+(b.p) a—(a.V) b
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grad (a.b)=axcurl b+bxcurl a+(a.p) b+(b.V) a
curl curl a=grad diva—V?2a
Vg 2 0 2
a.v=a a_x+aza—v+as 3}
div curl a=0, curl grad ¢=0 for every a and ¢.
(') Let n be a unit outward normal vector. Then
Gauss Theorem I n.F dS=I V.Fadv
N v
and [ np dS=J‘ Vp av.
N v

Stoke’s Theosem I F.dr=J curl F.n dS.
c 8

(6) The vector Vf is normal at every point of the surfacc

f=const.
Group B—Results of Trigonometry

log (a+ib)=1% log (a*45*)+i tan~1 (3)

log 'a—ib)=1% log (a®+bh?)—i tan™? (g—)

tan~! a—tan~! b=tan! G-l_—Zb)

-1 -1 = -1 a+b .
tan~! a+tan-! b=tan (l—ab‘

Group C—Results of Differential Calculus
If 4 is the angle mad= by a tangent with x-axis, then 3

tan aﬁ=$};—‘, cos '/J=‘%’, sin ¢=Z—f-
Two lines will be perpendicular if mum.=—1.
I''n+1)=n! if n is a positive integer.
I')=1, I'(})=+/m, I'(n) ['(1—n)=m=/sin nr,
T H=" 3 2.
Group D—Results of Complex Variable
1. The necessary and sufficient condition for a function
f(z)=u+iv to be analytic is that (i) wux, uy, vs, v, all are con-
tinuous and (ii) uy=wv,, uy,=—wv. Wwhere u,=0u/ox. (These equa-
tions are called Cauchy-Riemann equations.)
2. Cauchy Residue Theorem :—

IC f(z) dz=2mi (Sum of residues within C).
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3. Residue at simple pole z=a is the coefficient of 1/(z—a)
in the expansion of f (z).

Some Important formulae occuring in this book
Chapter 1. Equations of Continuity

1. q————VqS where ¢ is velocity potential.

d ] 0
2. g 6t+ V——-l—u +v 5}+wa—z

where q=ui+vj+wk.
Flux=Density. Area of the surface.Normal velocity

d—p+PV.q=0 : Euler’s equation of continuity

pJ=p, : Lagrange’s equation of contmuxty
ax+;;v+a—w—0 is the equation of continuity for liquid.
J ,0 . »
(u 3_x+v 5)}"'“’5'*“5}) F=0 is the condition for the surface
F (x,y,z ,t)=0 to be a possible form of boundary surface.
etk differential equations of stream lines.

W=j}curl q=0 if motion is irrotational.
ds®=(dr)?+(rdd)®+-(r sin 6 dw)? : spherical line element
ds2=(dr)?>+(rd0)®>+(dz)? : cylindrical line element.

Spherical polar co-ordinates : x=r sin 0 cos w,
y=r sin 0 sin w, z=r cos 6.

oh__0p __2_ 12 ¢ 1 2

e e ——— .,

=T T VT T T T ra YT T T  rsinbie
Equation of continuity in orthogonal curvilinear co ordinates

is ;;—t(phx day.hs daz. hs das).
[hl dﬂl (pq1 ha das . hs das)
“+h3 das. *hm (pq2 Jhida, ks das)

0
+hs3 das. ma(an.hl day hs das) ]°

Chapter 2. Equations of Motion
(1) Equation of continuity in different forms :——
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cu , ov , ow i
3x+ay+ =0 for liquid

xv=_F (t) when motion has spherical symmetry
xv=F (t) when motion has cylindrical symmetry
a_p +.9 ()

ox
2) Z:I—F—— Vp: Euler’s equation of motion.

=0 when velocity has one component.

F=-VQ. Also -54—'06}: ~Sox equation of

motion when velocity has one component.
Equation of motion for symmetrical motion :
v v 1 dp.
T p or
Bernoulli’s pressure equations :

I dp + 192+ Q=C more steady motion

and Id% zf +3% ¢*+Q=C more for unsteady motion.

Equations for imulsive action : qg—ql—_—]—;_ VZ:
- . .d (W\_ (W \’
Helmbholtz vortricity equation : 7 (;)-—(p—v q
Chapter 3. Sources, Sinks and Doublets
Lagrange’s function ¢ :
b ob o _ o

_ax_u=_b_f oy ox
Complex potential : W=d¢+iy, —QV=u_,'p
op _1 o 1 8q$ o

or ro0’r e or

Complex potential due to source+m at z=a is

W=—m log (z—a), in this case $=— m log r, y=—mb.
Complex potential due to doublet p at z=a, angle « is
#eta
T z—a

(i) Imuige of a source+4m w.r.t. a line is a source+m at
an equal distance on the other side of the line.
(ii) Image of a doublet p relative to a line is a doublet p
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(iii)

(iv)

at an equal distance on the other side of the line and
its axis is antiparallel to the object doublet.

Image of asource+m w.r.t. circle is a source+m at
the inverse point and sink —m at the centre.

Image of a doublet of strength x with its axis inclined
at an angle « w.r.t. circle is a douset of strength
p'=p a?/f? with its axis inclined at an angle x—a where
a is the radius of circle and f is the distance of doublet
from the centre.

dz

Blasius Theorem : X—i Y—Q)j‘ (dW)2 dz.

Chapter 4. Motion of Cylinders. Part [—Circular cylinders

K.

E. of liquid=—§p-‘- ¢ ?_;S ds on r=a

=_§pj (qSZf )raa adb.

General motion of cylinder

(i)

(i)

$=vx——up+3 (x*+y})+c

When circular cylinder is in motion with velocity U
along x axis, then -W=Ua?/z.
Streaming past a fixed cylinder : W=Uz+(Ua?/z).
W=%c log z due to circulation of strength & only.
Part 2—Elliptic cylinders

Elliptic co-ordinates :

z=c cosh {=c cosh (§+i7), c2=a2—b?,
a=c cosh a, b=c sinh «, a+b=c e*.

T=K. E. of liquid=—} j (¢ d¢)
op _0p

Solution of V%) is y=e"% (A cos ny+ B sin nv), — =~

ot on

If an elliptic cylinder is rotating in a liquid, then

=:’~ (a+5)2 e~2 sin 27, a/:=(—°— (a+-b)% e=%¢ cos 27,

T=K. E. othuld— P wch,

K. E. of liquid contained in a rotating elliptic cylinder is



