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PREFACE

The meeting on the subject of nonlinear partial differential equations
was held at Hiroshima University in February, 1983. Leading and active
mathematicians were invited to talk on their current research interests in
nonlinear pdes occuring in the areas of fluid dynamics, free boundary
problems, population dynamics and mathematical physics. This volume
contains the theory of nonlinear pdes and the related topics which have
been recently developed in Japan.

Thanks are due to all participants for making the meeting so success-
ful. '

Finally, we would like to thank the Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Science and Culture of Japan for
the financial support.

M. MIMURA
T. NISHIDA
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Lecture Notes in Num. Appl. Anal, 6, 1-19 (1983)
Recent Topics in Nonlinear PDE, Hiroshima, 1983

i On the Fluid Dynamical Limit of the

Boltzmann Equation

Kiyoshi ASANO* and Seiji UKAI**
*Institute of Mathematics, Yoshida College, Kyoto University
Kyoto 606, Japan
**Department of Applied Physics, Osaka City University
Osaka 558, Japan

1. Problem and Results

‘ This paper is a continuation of our paper [16] concerned with the Euler
1imit of the Boltzmann equation. In [16] we studied the behavior of the
density distribution f°(t,x,£) of rarefied gas particles, when the mean free
path €(>0) tends to zero. More precisely, if the intial density distribution
fo(x,E) is sufficiently close to an absolute Maxwellian and satisfies some rather
restrictive conditions, then the solution f°(t,x,£) of the Boltzmann equation
with initial data f; exists in a time interval [0,T] independent of € ¢ (0,2),

and f° converges to a lTocal Maxwellian O(t,x,€):

1.1 Ote) = —eltx) ol E-v(t.x)| /(28 (t,x)}

(2o (t,x)}"?2 ' )
when € tends to zero. Moreover, the fluid dynamic quantities {p(t,x),v(t,x),
8(t,x)} (i:e, mass density, flow velocity and temparature) satisfy the com-
presgib]e~Eu1er equation with initial data specified by fo(x,g). This Timit-
ing process is the first approximation to the Hilbert expansion of the solution
of the Boltzmann equation. '

In this paper we make a more detailed treatment of the Hilbert expansion

and establish an asymptotic formula such as
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fE(t,x,E) = fo(e,t,x,g) + ef‘(e,t,x,g) + oo
+ ¥0(£,t/c.x.£) + e}](s,t/e,x,g) + oeee,
ﬂv the above formula fj (e,t,x,£) 1s sufficiently smooth in (e,t) ¢ [0,11x(0,T]
(30,1,-+), and (e, t,x,€) is also sufficiently smooth in (e,t)e[0,11x(0,T/c)
and behaves 1ike exp(-ot) with ¢ > 0 (j=0,1,-+-). However, the general for-
mula to calculate fj and ;j is so complicated that we prove only the special
case
(1.2)  B(txg) = Plesting) + e t/enxse) + ef *(enting),
and suggest the method to prove the next step of the expansion.
The limiting process from the Boltzmann equation to the compressible
Euler equation was described in detail in [10] and [16], and we state only

the conclusion.

The Cauchy problem of the Boltzmann equation is described as

n

L8 E-fo = %—Q[f.f], t>0, (x,£) € R" x R" (n=3),

(1.3)

flt=o = fo(x-i)-
Here f = f(e,t,x,£) is the density distribution of gas particles with the
position x and the velocity £ at time t, £-v, = £,3/3%) +--<+ £ 3/5x,
and Q(f,h] is the symmetrized collision integral which is a quadratic operator
acting on the variable £. The scattering potential is assumed to be the cut-
off hard type of Grad [5]. >0 is the mean free path.

Since we consider (1.3) near an absolute Maxwellian , we put

olne) TV o 'lglz/(ze) s p>0,8>0,
1/2

g9(g) =
(]4) f(C!t’x'E) =g+tg
folxsg) = g+ g/ ug(x,g) -

U(Est)xgg) ’

Then we obtain the equation for the unknown u :

) I 1 1
55" -£ qu e Lu+ ¢ I'lu,ul ,



Fluid Dynamical Limit of the Boltzmann Equation

(1.5)
u|t=0 = uo(x,€),

where

-1/2 ]/qu,

Lu = 2g Qlg,g

rlu,vl = g~ Y22, ¢'/21 = riv,ul,

Denoting by G(k,&) = qu(',i) the Fourier transform of u,
a(k,€) = (2n) ™2 fer X y(x,g)ax,

we convert (1.5) to the following

W deka+ Lo+ lrra, i- T,
(1.6)
Qlt:O = Oo(k,i),
where
(1.7) PluI(k6) = (20)72 § rlulkek, )ov(k ) HEDIK'
R

The equation (1.6) is actually solved in this paper (see also [16]).

According to [3], the collision integral Q[f,f] has (n+2) invariants

(hy(€) 5 Osgsmel} = (1,6,,00008 le|%/2}, ie,

(1.8) 5Rnotf,f1(g)hj(s)ds =0, =010, ¥,

By the following formula we define fluid dynamic quantities associated with
the density fE(t.x,E) of gas particles, i.e, the mass density p(e,t,x), fluid
flow velocity v(e,t,x), internal energy e(e,t,x), temparature 6(c,t,x), stress
tensor P(e,t,x) = (Pij(e,t,x)), heat flow vector q(e,t,x) and pressure

p(e,t,x) (see [10]):

p(e,t,x) = jgnfe(t,x,g) ho(€) dE

ple,tx)v;(€,t.x) = jfe(t,x.a)hj(g)da (1<j<n) ,
ol tax)lefe,t,x) + 3 [v(e,t,0)12) = [ £ (t,,6h ,, (E)dE,
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(1.9) Py(Eatan) = JFE(EE)(E v, (oLt x)HE v, (e, x) e,

_1 € 2

q:j(est’x) = ?’ S‘f (t’xlg)lg - V(E,t,x)l {EJ - vj(E,t,x)}dE,
p(e,t,x) = % tr P(e,t,x),

e(ertsx) = %e(cit’x) = m p (E,t,X) .

The last is the ideal gas condition.
Combining (1.3) and (1.8), we obtain
9
3t Pt Vx-(pv) =0,

(1.10) t

9

5t (V) + Vx'(ptvv) +vp=0, v = (vivj) 5
£l

55 (o(e + ‘flv|2)} +9 lo(e + %|v|2) +Py+ql=0.

Since P = pI (I = the identity matrix) and q =0 for the local Maxwellian f,

the equation (1.10) reduces to the compressible Euler equation for e = 0

(and t > 0).
According to Proposition 3.1 of [12], we have
. ’ = lr3 B ooy dis 2
Pij(en ) = R(E: )61,] - &u(e){z( axi Vj + axj Vi) n VX v} o+ 0(5 )t

gj(€2t) = - ex(0) g5 8 + 0(D)
J

Thus the fluid dynamic quatitites {p,v,8} obtained from the density
f(e,t,x,£) given in Theorem 1.2 will satisfy the compressible Navier-Stokes

2)_

equation with the error of O(e A more delicate treatment will be given

elsewhere.

To solve the equation (1.6) we use several function spaces and norms
(cf. C161).
We introduce these spaces. All functions are measurable or continuous.

(1) K g dukEg) ==

sp &0 (i elel Plug)] < =
k,& R

luly 08
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(1.12) 5 3 u(kg) =

ueXy g and Ix(Kl+lEl>R)ul ¢ g > 0 (R>=) .

Here x(|k|+|£|>R) is the characteristic function of the set { (k,&)eR™R";
|k|+|€|>R}. With a Banach space X, BO(D;X) denotes the space of X-valued,"
bounded and continuous functions defined on D. We put Ry = [0,1*ro,71,
Rp* = Ry \ {(0,0)} and Ry = {(e,7); (E,ET)eRT}. For m = (my,m,), m; 20,
m, 2 0 (resp.m=20),

m’u,Y
(1.13) Z!.,B,T

B (RXy g) 2 u = u(e,t) —

VKD (2)i( )3y 4y o 8O(R,:K° )

2-i-j,B-i-j

for 0 <i<m and 0= Jjs my (resp. 0 < i+j < m).

- 3,1, 9:j
B I e T

(1.18) 23 P = B™Y(RLX] ) s defined similarly.

(1.15) 71 = BTV OREEG g) > u(e,T) —

e(a-EYT)(]+[kI)ecT(sg)i(sgdju(E.T) 3 Bo(iT;ig-i-j,B-i-j)'

for 0<is<m and 0<j<m (resp. 0 < i+j <m).

LI  sup et

Iu 4
oyt E SR et
dyig 9yj !
1) e o eyy0qog,800-5

Now we can state our results (cf. Theorem 1.1 of [16]).

Theorem 1.1. Let g be an absolute Magwellian and let

a>0, 2>n+l, B 21,
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Then there exist positive numbers a ,b 50 and b'-‘l' such that for each initial

data f0 =g+ g]/zu0 satisfying

~ Ao} ~
g € Xg g s lGgla,e8 <2 »

the following statements hold with constants Y > 0, T > 0 (a-YT20) and o > 0.
(i) For each € € (0,11,(1.3) (resp.(1.6)) has a unique solution

f(e,t,x,€) (resp. U(€,t,k,&)) on the time interval [0,T], and there hold

1’=g<l>g]/2

u(e,t) = (e, t) + WO tre) + eu’ (e, t)
~0 (0,1),a,Y, a
B(e,t) € 23 2 1 e 1 80,1y s001,0,8,7 < B 10pla g 0

(Ol)a,YO " ~0

e, « 2 1(0,1),a,v,0,2,8,7 = Bol%la,z,6 »

AT,* (0,1),a,y,* Gl
i (et e Zy gt 18 10,0),0,v,2,8,7 < T 1%lg,0 8 -

(i1) For t € (0,71, f(0,t,x,E) = g(&) +g(€)]/2 0(0 t,x,&) is a loecal
Maxwellian whose fluid dynamical quantities {p,v,0} are the solution of

the compressible Euler equation (1.10) with P = pl and q = O.

(ii1) Moreover, there hold
~0 l $,Y ~0 1
ez L0 la,0,0,8,7% % I%la,e8

.‘: 1,8,Y,0 20 1
g€ Ziigir ol U ey 0,0.8,7 5 B0 [O0lge e

* * *
A e " L and g2 a7 g = 0 (00),

Theorem 1.2. Let g be an absolite Maxwellian and let
o>0,2>n+3, B 22,
Then there exist positive numbers az,bj, bj (j=0,1), b3, Yir %5
(j=0,1, ag =a, a.- yoT 20y, 0 - Y]T 2 0) and 0 such that for each initial

F

data f0 =g+ g]/zu0 satisfying

deXpgs liglyoesays
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the solution f(e,t,x,E) of (1.3) (resp. 0(e,t,k,E) of (1.6)) is described in
the following formula
u(e,t) = uOe,t) + @0, t/e) + eul(e,t) + (e, tre) + 2P (e,t),

2,0 ,Y
et)ez, I3

i
58,70 b IZ.a-;Y-.l-J.B.T < bylo

Olu,ﬂ.,B »

« ,u Y 150
ﬁj(e'r)el ‘jY Iﬂl Sb|0| ’
> 2-3,B, T Z.QJ.Y 0,2-3,8,T 0 a,l,B

for j=0,1, and

2.2, 2,0 Y1- 2,* *
R O A "1.a1,y1,1-1.s.1 Sby 10y 0,8 o
3 4 232 2%

Ea—— 2, (E t)|€ =0 ° =0, € ‘a? Q |€=0 =0 (t>0).

We note that if 0 € X¢ then u(x,E) is analytic in x € R" + iB_,

L,8 *
B, ={yeR"; lyl <a}, and uniformly bounded on R" + iB;, 0 <6 <a .
According to the results of Theorem 1.1, we put

e, t.x,6) = g(€) + 9(6)2u0(e,tuxs8)
(1.16)  Ple,tizesnit) = 9(8) 2 We, t/eiE)

1% (e taxaf) = 9(6) e (e, tuxsE)

Then we have the desired formula (1.2).

Similar expansion formula can be estableshed using the results of Theorem 1.2.

Considering that fo, fo and f]’* are analytic in x € R" + i&:;yt for

0< t< T, our existence theorem is of Cauchy-Kowalewski type ([81,[9]). wWe

hope to find more natural existence theorems.

2. Some estimates

Denoting the unknown by u(k,£) instead of Gi(k,E), we write (1.6) as

du _ " 1 1.2
. i i€*ku + g L+ Tlu,ug,
ult=0 - uo(klg) - ' -
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We define the linearized Boltzmann operator
(2.2) B(k) = - if-k + L.
Then the equa%ion (2.1) reduces to
du 17

3t Tlu,ul,

uit=0 = uo(k,ﬁ).

. = g-B(ﬁk)u +

The operator B(k) acts on the variable £ with the parameter k « R".

tB(k)

B(k) generates a strongly continuous semi-group e in various function

spaces on Rng, for example in [Z, where

©

L, = {f{&) ; (l+]€[)5 f(&£) is measurable and bounded !,

B
(24) s " @ 1218 1 g £ b
Lg = {fe g s (1+1g]) [f(E)] » 0 uniformaly as [&] » =},

with the norm

(2.5) - flg = sup (+leh)® 16|
Thus the equation (2.3) can be rewritten as the integral equation
c : t = q &
(2.7) u(t) = eBBERE ey o [ elE8IBER/E Lnpy(e) u(s): (ke )as.

Now we quote some fundamental properties of L and I ([5],l63). We denote

by c(A),d(B),*** the constants 2 0 depending on the parameters X, B, **--* .

Lemma 2.1 (7) The operator L has the decomposition
L=-A+K,
A is a multiplication operator, A = v(E)x, and K is an integral operator in E.
Moreover
(2.8) A V(E) is contiouous and Vg < v(E) < V](1+[5i)
with positive constants Vo and V1 and with a constant c(8) 370
(2.9) Ikulg < c(8)lulg ;s B €R.

(11)  The speatrum o(L) of L is invariant in LZ and i: , B e R, and
contained in (-=,0]. L has 0 as an isolatied eigenvalue of multiplicity
n+2. Denoting the corresponding eigenprcjection by P(0) ( = ZPJ(O). see
Lemma 2.2. (i)(c)), we have

(2.10)  P(O)Tlu,vl =0,  u,v e L"B“ (3 = 0),
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(2.11) {P(O)ulB < c(B,B')lu|B} for any 8,8' ¢ R.
(i11) The operator I\_]T[ » 1 1s a continuous mapping from L: x LZ

(resp. ['B x i‘; ) to LZ (resp. LZ ) for B > 0? i.e,
(2.12) 1A rtu,vilg < d(8)lulglvlg . 8 2 0.

The following Lemma is concerned with the spectral properties of B(k),
essentially due to E11is-Pinsky [4], and crucial in the study of the

Boltzmann equation (e.g, [111, [141, [15] and [16] ).

Lemma 2.2. () There is a positive number Ko such that for |k| < )
B(k) has (n+2) eigenvalues )\j(k) (j=0,***, n+1) and coresponding eigen-
rrojections Pj(k) of rank 1 satisfying the following (a), (b) and (c).
> = A, g "=’,---, ,I'S .
(a) B(k)PJ(k) J(k)PJ(k)' Jj=0,1 n+l, ki o
A; € C(B. ), Re A (k) < 0 and
Cyy a(2) 142 3
2500 = =D A 12 4ok (1kl + 0)

(
with the coefficients X'}) e R and )\(g) > 0.
(b) Pj(k) e € (EK )s and there exists a constant ¢ (B,B"') such that
0
[P5(K)ug = €;(8,8")ulg. B.8' € R).

(e) Put P(k) = ZPj(k). Then o (B(k)(1-P(k))) <{A ; Re A < -00}.
with some 99 > 0.
P(0) = ZPJ.(O) is the eigenprojection in (2.10).

(e) If |k 2 kg» 9(B(K)) « (X 5 Re X < o).
(i) Let u = u(g) e LZ (resp. u = u(k,&) ¢ 3(:,8 ). Then

etB(K), BO(10,= xR ; & 3

(resp. etB(k)u € BO(LO,“’) H X(; 8 ).
I

Let x(k) e Co(RY), 0 < x(k) < 1, x(k) = 0 7o [kl 2 kg, =T for |k s«y/2,
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x(k)}. Then there hold
e(BsB')Iulsl (S|BI € R) s

and Q(k) = {1-P(k)}Ix(k) + {1
1B k)l

IA

A

-ant
IetB(k)Q(k)uIB g(B)e % lulg (8 €R),

with constants e(8,8') and g(B) 2

The following lemmas are simple consequences of the above.

lemma 2.3. Leta 20, 2> nandB > 0. Then A VI , 1 and

B(ek)”™ Q(sk)I‘f s 1 are continuous mappings from (Z g )-((;: g to )'(z g- Moreover

=] 2
(2.13) |A r[”"']'lu.z,e < d(2,8) |u!a,9.,8 Ivlu,l,s 5
(2.14) IB(ek)MQ(ek) Truwd [ o o s d(2.8) Jul,  glvl, 4 5 v €20,

with a constant d(L,8) = 0

Lemna 2.4. Define the functions u,(k.ek) and Pj‘(k,ek) by

1
1
2 ALY S=Ags = kev .
(2.15) wjlkek) = 1o e) So Q50c®,
1
1 1
y Jikek) =L (p, - P, - VP, .
(2.16) Pyl (kiek) = 1 (Py(ek) - Py(0) Sok &3 0ek)®
Then both ofu (k,ek) and P (k ek) are in B (0,17 x B,< ). Moreover
(2.17) |(3—>u (k)] < ¢ [, 120,100, 0% 3% w1,

(2.18) (2P (kiekuly s ¢ 58,81 [KI ™ ulg,, 120,150, 0% § 5 ml,
for B,B' € R.

In the proof of (2.14), we note that if we define the multiplication

operator A(k) = - i€k - V(E), then A(ek)']A is a bounded operator in

o
LB and xl,B
B(ek) 1A = A(ek)™'A - B(ek) TKA(ek) A

with the bound 1. Thus the equality

shows (2.14), because Q(ek) and Q(ck)B(ek)'] = B(ek)'10(sk) are uniformly

bounded in LZ with respect to e 2 0 and k € R".
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Now we treat the terms appearing in (2.7). First, noting the equality

1 = P(ek)x(ek) + Q(ek), we have

+1 -tu,(k, €k
(2.19) otBEK) /e _ ;’éo . uj( € )Pj(ek)x(Ek) % etB(ek)/eQ(ek)

n+]
= onFJ-(t;k,Ek) + G(t/e,k,ek) = F + G

Next, noting (2.10) and the corresponding equality P(0)I = 0, we have

t
(2.20) goe(t's)B(Ek)/e l—r[u(s).u(s)]ds

t -
=S n e'(t's)"j(k’Ek)Pj](k,ek)x(ek)r‘[u(s),u(s))ds

0 jto
t _ A
+ % e(t-s)B(ek)/eq(ek) T'lu(s),u(s)ds
0
t ~
Ego F(t-s,k,ek) TLu(s),u(s)lds
1 t -
+ 1 [ 6((t-s)/e keek) TLu(s),u(s)dds.
0
We put t )
Flu,vi(e,t) = SO F(t-s,k,ek) TLu(s),v(s)lds,.~
(2.21) < )
Glu,vi(e,t) = SO G (t-s,k,ek) Tlu(gsy,v(es)lds.

Then we have the fo’llvowing

Lemma 2.5. Let uoei((;s. Then for any Y 20, T 20, B' and m

F(t.koekug(k,) € 202" r s

G(r.kiek)uglkyt) € 271" (0 <o <og) s
with
< Ll q
I Ftkekdug Dp a) 002,877 = €(p,q) (B BY1#T) Hugly o g -
(2.22)

“ G(T'k'Ek)uo “(p.q).a.Y.O,E.B,T < g(P.Q)(B) |u°'°-2-8 ’
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Lemma 2.6. ‘fet a> 0,y >0,2>n,82>0and T> 0. witha -yT > 0.

Let m=0or (0,1) and m' = m + (0,1). Then for u, v e Z?:g:}t or Zz]:g:.Yr’*

%4 Zm',a,y &

and U, Ve mT
(2.23) | HmﬂnmﬂﬂJ#.Jstzﬁum%

i ﬂ M Hm,a,y,ﬂ.,B,T” v "m,m,y,l,B,T .
(2.24) I etusvd Booyoe.8,7 ° Bnl(2s8)

< nm,a,y,E,B.Tu Y nm,a,y,Q,B,T ’

(2.25) | Su ke © Bp0)

B il oo, Vinayes,t:
(2.26) Ietwviliy oy o.0.8,7 = Bpl®sBs0)

o~
i ll U um.a,‘{.ﬁ ,R,B,Tu v “m,a,Y 30,%,8,T°

where %-|m| >n, B-|m 20,0<0 < 90 For example, for m = 0
bm(R,B',B) =e (B',8)d(2,8) ,
by(%:8) = a(8)(1 + - g(8)c(8)1d(2,8),
0

Yo
AY] 00\)

1

0go

b, (2.8,9) = q(8) {1 +

g9(8)c(8)} d(%,8)

q(B) = the supremum of the norm of Q(k) in the space l'.or;

Moreover F is continuous as a mapping
M0,y o 7Mya,Y m',a,B
PradoT * eyt Bg,r

MaQ,Y o oMs0,Y,* | om',a,Y,*
Lot *Lgr T et

G is also continuous as a mapping

My0tyY,* M,y ,* m',o,Y,*
L1 * Lt T higy



