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HE past decade witnessed the emergence of the

field of power spectrum estimation as a rather
independent subfield of digital signal processing. Ad-
vances in very large scale integration technology have
had a major impact on the technical areas to which
spectrum estimation techniques are being applied.
Research in power spectrum estimation has led to a
variety of parametric and nonparametric techniques,
extensions to multidimensional, multichannel, and spa-
tio-temporal processing algorithms, and to computa-
tionally fast procedures. Concurrently, various tech-
niques have been developed for estimation of signal
parameters, like frequencies of sinusoids and poles and
zeros. In some cases, parameter estimation was an
intermediate step in some parametric spectrum estima-
tion procedures, e.g., the determination of prediction
error filter coefficients in the maximum entropy
method. In general, however, parameter estimation
technigues have grown to become a research area in its
own right, although closely related to spectrum estima-
tion. Extensive research has been conducted on the
statistical properties of estimation techniques. The
number of important applications have constantly been
increased.

Rapid developments in the field have naturally led to
an expansion of the technical literature. In 1978, in
order to make a number of the important papers in the
field easily accessible, the |IEEE PRESS published the
book, Modern Spectrum Analysis, edited by D. Childers
[1]. Since the publication of that first reprint book, there
have been many important developments in the field
with regard to theoretical approaches, extensions, and
applications. These have been particularly significant in
the area of parameter estimation. As a consequence of
such a rapid development, a number of publications
entirely devoted to power spectrum estimation have
appeared in print. They include the proceedings of four
spectrum estimation workshops, initiated by the Rome
Air Development Center [2], [3] and later sponsored by
the IEEE Acoustics, Speech, and Signal Processing
Society [4], [5]. A special issue of the Proceedings of
the IEEE was published in 1982 [6], and one of the /EE
Proceedings, part F, in 1983 [7]. These publications
provide a chronology of spectral estimation research
since 1978.

This second volume of selected reprints on power
spectrum estimation complements the first. In selecting
the papers to be included in this reprint book, an
attempt was made to cover different topics. Each paper
included contains at least one important aspect of

Preface

spectral analysis not covered by other papers in the
collection. On the other hand, every effort was made to
reduce the inevitable overlap of the material to a
minimum. In deciding among a number of papers
treating a similar subject, we inclined toward selecting
those which were the best combination of representa-
tion, length, and tutorial value. Therefore, in some
cases, when a good review or tutorial paper was
available, it was included in place of the original source
paper.

Within the last ten years or so, an approximate time
period covered in this collection, the papers on spectral
analysis have appeared in a wide variety of technical
journals published both within and outside the IEEE.
Within the |EEE itself, the Acoustics, Speech, and
Signal Processing Society has had the strongest inter-
est in the area. However, a wide range of applications,
as well as the interest in some theoretical aspects, have
caused a significant number of papers in spectral
analysis to appear in, at least, ten other IEEE Groups’
and Societies’ Publications. Therefore, it was possible
to draw most of the selections for this reprint book from
the IEEE sources, and still retain the generality in
presenting the important topics. However, a number of
important papers from other sources are also included.

Due to the page limitation, a number of excellent
papers could not be included in spite of their appropri-
ate content and/or tutorial value. In particular, most of
the September 1982 special issue of the Proceedings of
the IEEE [6] fits into this category. Therefore, it was
decided not to include any paper which was published
in [6], and treat that special issue as a companion
volume.

The material in this book is divided into six parts. The
division is somewhat arbitrary since a number of papers
treat more than one specific topic. Part |, ““Introduc-
tion’’, contains one paper, which became classic within
a few years after being published. It gives a clear and
thorough overview of up-to-date developments in the
area of spectrum estimation. Due to the clear presenta-
tion of the subject matter, this paper represents excel-
lent introductory reading for newcomers to the field.
Part 1l, ‘‘Parametric Methods’’, deals with estimation
procedures which are based on some a priori assump-
tions about the signal under analysis. The assumptions
are made about the probabilistic mechanism (mostly,
the second-order statistics) that governs the signal
generating sources, resulting in assigning a particular
parametric model to the signal. The most common
models are autoregressive (AR), moving average (MA),



and mixed autoregressive-moving average (ARMA)
models. It is the discovery of fast computational
methods in this class that initiated a rapid development
of the field of spectrum estimation nearly two decades
ago. Part lll, “’Nonparametric Methods’’, treats meth-
ods which do not assume a priori information about the
signals. They are based on either the classical Fourier
decomposition or some other orthogonal decomposi-
tion of signals. Since no model is imposed upon the
signal, a method from the nonparametric class is
theoretically, at least, applicable to a wider variety of
signals than is a parametric method. However, the
latter performs better on signals which are known to fit
the assumed model.

Part IV, “’Multidimensional, Multichannel, and Spatial
Spectral Analysis’’, deals with processing of either the
signals which are functions of more than one indepen-
dent variable (multidimensional), or a set of signals
which are vector processes of one independent variable
(multichannel). Spatial-temporal spectral analysis of
data received by an array of sensors is a typical
example of the combination of the above cases. Array
processing finds applications in virtually all areas where
temporal-frequency spectral analysis is used. Paramet-
ric and nonparametric methods can be implemented
using various computational algorithms. Some of them
are given in Part V, ““Algorithms and Adaptive Tech-
niques’’. A majority of the earlier algorithms are based
on the global optimization (e.g., in a least mean square
sense) of some system parameters. These are recently
being superceded by fast algorithms which are recur-
sive and/or adaptive. Development of such algorithms
enables faster processing of large amounts of input
data. Important by-products of spectral analysis are
signal detection and estimation of signal parameters.
They are treated in Part VI, ‘’Statistics and Detection’’,
together with the statistical properties of the analysis
techniques. An important issue in detection of multiple
signals is the signal resolvability, and a few papers that
deal with it are included in this part.

Since there are several papers in the companion
volume [6] that should have been included in this
reprint collection, we will list the contents of [6] with a
brief description of each paper.

The first paper entitled ‘*A historical perspective of
spectrum estimation’’, by E. A. Robinson presents a
detailed overview of the developments in spectral
analysis from Newton to the present.

Nine of the remaining 12 papers that follow, are
concerned with various aspects of parametric methods.
J. A. Cadzow’s paper, ‘‘Spectral estimation: An over-
determined rational model equation approach,’’ and E.
T. Jaynes’ paper, ‘‘On the rationale of maximum-
entropy methods,’’ treat spectral analysis methods,
based on rational modeling of time series, from two
viewpoints. The former discusses parameter hypersen-
sitivity when their estimates are obtained by using a
minimal set of Yule-Walker equations, i.e., when the

number of equations are equal to the number of
parameters. It suggests counteracting this hypersensi-
tivity by using more than minimal number of equations.
The latter paper treats various methods from the
information theoretic point of view.

The next paper, entitled ‘’“Maximum-entropy spectral
analysis of radar clutter’” by S. Haykin, B. W. Currie,
and S. B. Kesler, describes the digital processor for
classifying the different forms of radar clutter as
encountered in an air traffic control environment. The
Doppler-based features are obtained by the multiseg-
ment maximum-entropy procedure. The paper by J. P.
Burg, D. G. Luenberger, and D. L. Wenger, entitled
"Estimation of structured covariance matrices’’ ap-
proaches the subject through the maximum likelihood
estimate of the covariance matrix, rather then the
power spectrum density estimate. The underlying proc-
ess is assumed to be zero-mean Gaussian, and the
covariance matrix of the special structure is sought.
When the maximum-entropy estimate is found from the
covariance matrix obtained in this way, there is no line
splitting effect.

In their paper, ‘‘Estimation of frequencies of multiple
sinusoids: Making linear prediction perform like maxi-
mum likelihood’’, D. W. Tufts and R. Kumaresan
suggest a modification of the least-squares linear
prediction method, by replacing the usual covariance
matrix estimate with the least squares approximation
matrix having the lower rank. The estimation perform-
ance for short data records and low signal-to-noise ratio
is significantly improved. This paper gives somewhat
more detailed account of the subject than the paper [9]
in Part Il. Combination of forward and backward linear
prediction is a part of a number of parametric spectral
analysis procedures. It is naturally parametrized by
lattice filter structures. A comprehensive summary of
lattice algorithms for estimating model parameters is
given in B. Friedlander’s paper ‘‘Lattice methods for
spectral estimation’’. It also shows the methods of
computation of various model parameters from lattice
parameters.

The equivalence between the problem of estimating
the principal frequency components in the time series
and the problem of determining the bearing of a
radiating source with an array of sensors is presented in
D. H. Johnson’s paper ‘“The application of spectral
estimation methods to bearing estimation problems’’.
This treatment is similar to the one given in the paper
[6] in Part IV. J. H. McClellan’s paper ‘‘Multidimen-
sional spectral estimation’’ gives a thorough review of
the subject and discusses several types of estimators
including Fourier, MLM, MEM, and Pisarenko estima-
tors.

The last paper in the section on parametric methods,
entitled ‘“Spectral approach to geophysical inversion by
Lorentz, Fourier, and Radon transforms’’, written by E.
A. Robinson, deals with the application of the spectral
analysis to one-dimensional (1-D) and two-dimensional



(2-D) geophysical inversion problem. The objective of
the inversion is to determine the structure of the earth
from the seismic data obtained at the surface. The earth
is modeled as being composed of horizontal layers with
different propagation parameters, and the seismic ray-
paths are taken to be in either vertical (1-D) or slanted
(2-D) direction.

First of the three papers in nonparametric section,
“*Spectrum estimation and harmonic analysis’’, by D. J.
Thomson treats the estimation problem through the
solution of an integral equation that defines a Fourier
transform of the time series. The solution is given in
terms of orthogonal data windows (discrete prolate
spheroidal sequences). The method shows a good
performance for time series with both narrow-band and
wide-band spectral components. The following paper,
entitled ‘‘Robust-resistant spectrum estimation’’, by R.
D. Martin and D. J. Thomson deals with the preprocess-
ing of time series which contain local perturbations,
such as missing data points or non-Gaussian additive
noise. These perturbations normally cause bias and
variance increases in estimated spectra. To prevent
this, authors suggest ‘‘data cleaning’’ by either one-
sided or two-sided perturbation interpolators based on

autoregressive approximations, prior to spectrum esti-
mation.

The last paper in the nonparametric section, ‘‘Spec-
tral estimation using combined time and lag weight-
ing’’, by A. H. Nuttall and G. C. Carter, presents a
computationally efficient spectral estimation method
with good statistical properties. Also, their procedure
yields classical methods, such as the Blackman-Tukey
and the Welch method, as special cases. The procedure
is described in the papers [4], [5] in Part lll.
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HIS introductory section consists of a single paper,

entitled ‘‘Spectrum analysis—A modern perspec-
tive’’ by S. M. Kay and S. L. Marple, Jr. This paper is a
comprehensive review of the spectrum analysis tech-
niques developed up to the time of its publication in
1981. In addition to the classical Blackman-Tukey and
periodogram methods, the paper treats modern tech-
nigques by first examining the modeling and parameter
identification approaches, on which these techniques
are based. Modern techniques discussed include three

Part |
Introduction

rational modeling approaches namely, moving average
(MA), autoregressive (AR), and autoregressive-moving
average (ARMA), then the minimum variance distor-
tionless unbiased technique (also known as Capon’s
maximum likelihood method), and the Pisarenko and
Prony techniques. The comparative overview of all
methods gives a significant tutorial value to the paper,
so that it represents an excellent introductory reading
for the newcomer to the field.







Spectrum Analysis—A Modern Perspective

STEVEN M. KAY, MEMBER, IEEg, AND STANLEY LAWRENCE MARPLE, JR., MEMBER, IEEE

Abstract—A summary of many of the new techniques developed in
the last two decades for spectrum analysis of discrete time series is
presented in this tutorial. An examination of the underlying time series
model assumed by each technique serves as the common basis for
understanding the differences among the various spectrum analysis
approaches. Techniques discussed include the classical periodogram,
classical Blackman-Tukey, autoregressive (maximum entropy), moving
average, autoregressive-moving average, maximum likelihood, Prony,
and Pisarenko methods. A summary table in the text provides a concise
overview for all methods, including key references and appropriate
equations for computation of each spectral estimate.

I. INTRODUCTION

N STIMATION of the power spectral density (PSD), or
simply the spectrum, of discretely sampled deterministic
and stochastic processes is usually based on procedures
employing the fast Fourier transform (FFT). This approach to
spectrum analysis is computationally efficient and produces
reasonable results for a large class of signal processes. In spite
of these advantages, there are several inherent performance
limitations of the FFT approach. The most prominent limita-
tion is that of frequency resolution, i.e., the ability to distin-
guish the spectral responses of two or more signals. The fre-
quency resolution in hertz is roughly the reciprocal of the time
interval in seconds over which sampled data is available. A
second limitation is due to the implicit windowing of the data
that occurs when processing with the FFT. Windowing mani-
fests itself as “leakage” in the spectral domain, i.e., energy in
the main lobe of a spectral response “leaks’ into the sidelobes,
obscuring and distorting other spectral responses that are
present. In fact, weak signal spectral responses can be masked
by higher sidelobes from stronger spectral responses. Skillful
selection of tapered data windows can reduce the sidelobe
leakage, but always at the expense of reduced resolution.

These two performance limitations of the FFT approach are
particularly troublesome when analyzing short data records.
Short data records occur frequently in practice because many
measured processes are brief in duration or have slowly time-
varying spectra that may be considered constant only for short
record lengths. In radar, for example, only a few data samples
are available from each received radar pulse. In sonar, the
motion of targets results in a time-varying spectral response
due to Doppler effects.

In an attempt to alleviate the inherent limitations of the FFT
approach, many alternative spectral estimation procedures
have been proposed within the last decade. A comparison of
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the spectral estimates shown in Fig. 1 illustrate the improve-
ment that may be obtained with nontraditional approaches.
The three spectra illustrated were computed using the first
nine autocorrelation lagsl of a process consisting of two equi-
amplitude sinusoids at 3 and 4 Hz in additive white noise. The
conventional spectral estimate based on the nine known lags
R,,(0), - * *, Rxx(8) is shown in Fig. 1(a). The spectrum is a
plot of 512 values obtained by application of a 512-point FFT
to the nine lags, zero-padded with 503 zeros. This spectrum,
often termed the Blackman-Tukey (BT) estimate of the PSD, is
characterized by sidelobes, some of which produce negative
values for the PSD, and by an inability to distinguish the two
sinusoidal responses.

Fig. 1(b) shows the spectral response of the autoregressive
(AR) method based on the same nine lags. The improvement
in resolution over that shown in Fig. 1(a) has contributed to
the popularity of this alternative spectral estimate. Although
the AR spectral estimate was originally developed for geophys-
ical data processing, where it was termed the maximum entropy
method (MEM) [16], [37]-[39], [50], [84], [136], [138],
[158], [221], [231], [246], [247], it has been used for ap-
plications in radar [75], [92], [99], [116], [125], [126],
[216], sonar [122], [198], imaging [98], radio astronomy
[162], [264], [265], biomedicine [71], [74], oceanography
[96], ecological systems [88], and direction finding [70],
[128],[233]. The AR approach to spectrum analysis is closely
related to linear prediction coding (LPC) techniques used in
speech processing [80], [130], [143], [145]. The AR PSD
estimator fits an AR model to the data. The origin of AR
models may be found in economic time series forecasting [31],
[276] and statistical estimation [189]-[191]. The MEM
approach makes different assumptions about the lags, but for
practical purposes, the MEM and AR spectral estimators are
identical for one-dimensional analysis of wide sense stationary,
Gaussian processes.

The ultimate resolution of the two sinusoidal signals into
two delta function responses in a uniform spectral floor, repre-
senting the white noise PSD level, is achieved with the Pisarenko
harmonic decomposition (PHD) method shown in Fig. 1(c).
This technique yields the most accurate estimate of the spec-
trum of sinusoids in noise, at least when the autocorrelation
lags are known.

As evidenced by the spectrum examples of Fig. 1, the devel-
opment of alternative spectral estimrates in widely different
application areas has led to a confusion of conflicting termi-
nology and different algorithm development viewpoints. Thus

!The autocorrelation function Ryx(k) of a stochastic wide sense
stationary discrete process x, at lag k is defined in this paper as the
expectation of the product x, kX, Of Ryx(k)= Elxy,xxn], where
X, is assumed to have zero mean. The * denotes complex conjugate,
since complex processes are assumed in general, and E ( ) denotes the
expectation operator.

Reprinted from Proc. IEEE, vol. 69, pp. 1380-1419, Nov. 1981.
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Fig. 1. Examples of three spectral estimates based on nine known auto-
correlation lags of a process consisting of two equi-amplitude sinusoids
in additive white noise (the variance of the noise is 10 percent of the
sinusoid power). (a) BT PSD. (b) Autoregressive PSD. (c) Pisarenko
harmonic decomposition PSD.

two purposes of this review are 1) to establish a common
framework of terminology and symbols and 2) to unify the
various approaches and algorithm developments that have
evolved in various disciplines.

Claims have been made concerning the degree of improve-
ment obtained in the spectral resolution and the signal detect-
ability when AR and Pisarenko techniques are applied to
sampled data [36], [206], [250], [251]. These performance
advantages, though, strongly depend upon the signal-to-noise
ratio (SNR), as might be expected. In fact, for low enough
SNR’s the modern spectral estimates are often no better than

those obtained with conventional FFT processing [122] ,
[150]. Even in those cases where improved spectral fidelity
is achieved by use of an alternative spectral estimation pro-
cedure, the computational requirements of that alternative
method may be significantly higher than FFT processing. This
may make some modern spectral estimators unattractive for
real-time implementation. Thus a third objective of this paper
is to present tradeoffs among the various techniques. In par-
ticular, the performance advantages and disadvantages will be
highlighted for each method, the computational complexity
will be summarized, and criteria will be presented for deter-
mining if the selected spectral estimator is appropriate for the
process being analyzed.

Some historical perspective is instructive for an appreciation
of the basis for modern spectral estimation. The illustrious
history of the Fourier transform can be traced back over 200
years [34], [223]. The advent of spectrum analysis based on
Fourier analysis can be traced to Schuster, who was the first to
coin the term “periodogram” [218], [219]. Schuster made
a Fourier series fit to the variation in sun-spot numbers in an
attempt to find “hidden periodicities” in the measured data.
The next pioneering step was described in Norbert Wiener’s
classic paper on “generalized harmonic analysis” [269]. This
work established the theoretical framework for the treatment
of stochastic processes by using a Fourier transform approach.
A major result was the introduction of the autocorrelation
function of a random process and its Fourier transform rela-
tionship with the power spectral density. Khinchin [127]
defined a similar relationship independently of Wiener.

Blackman and Tukey, in a classical publication in 1958 [25],
provided a practical implementation of Wiener’s autocorre-
lation approach to power spectrum estimation when using
sampled data sequences. The method first estimates the auto-
correlation lags from the measured data, windows (or tapers)
the autocorrelation estimates in an appropriate manner, and
then Fourier transforms the windowed lag estimates to obtain
the PSD estimate. The BT approach was the most popular
spectral estimation technique until the introduction of the
FFT algorithm in 1965, generally credited to Cooley and
Tukey [53]. This computationally efficient algorithm re-
newed an interest in the periodogram approach to PSD esti-
mation. The periodogram spectral estimate is obtained as
the squared magnitude of the output values from an FFT
performed directly on the data set (data may be weighted).
Currently, the periodogram is the most popular PSD estimator
(171, [24], [32], [105]-[107], [109].

Conventional FFT spectral estimation is based on a Fourier
series model of the data, that is, the process is assumed to be
composed of a set of harmonically related sinusoids. Other
time series models have been used in nonengineering fields
for many years. Yule [276] and Walker [258] both used
AR models to forecast trends in economic time series. Baron
de Prony [202] devised a simple procedure for fitting expo-
nential models to data obtained from an experiment in gas
chemistry. Other models have arisen in the statistical and
numerical analysis fields. The modern spectral estimators
have their roots in these nonengineering fields of time series
modeling.

The use of nontraditional spectral estimation techniques
in a significant manner began in the 1960’s. Parzen [189] ,in
1968, formally proposed AR spectral estimation. Indepen-
dently in 1967, Burg [37] introduced the maximum entropy
method, motivated by his work with linear prediction filtering



in geoseismological applications. The one-dimensional MEM
was shown formally by Van den Bos [255] to be equivalent
to the AR PSD estimator. Prony’s method also bears some
mathematical similarities to the AR estimation algorithms. An
area of current research is that of autoregressive-moving average
(ARMA) models. The ARMA model is a generalization of the
AR model. It appears that methods based upon these may pro-
vide even better resolution and performance than AR methods.
The PHD [194], [195] is one example of a spectral estimation
technique based upon a special case ARMA model.

The unifying approach employed in this paper is to view
each spectral estimation technique as being based on the fitting
of measured data to an assumed model. The variations in per-
formance among the various spectral estimates may often be
attributed to how well the assumed model matches the process
under analysis [173]. Different models may yield similar
results, but one may require fewer model parameters and is
therefore more efficient in its representation of the process.
Spectral estimates of various techniques computed from sam-
ples of a process consisting of sinusoids in colored Gaussian
noise are presented in Section III to illustrate these variations.
The process has both narrow-band and broad-band compo-
nents. This process helps to illustrate how some spectral esti-
mates tend to better estimate the narrow-band components
while other spectral estimates better estimate the broad-band
components of the spectra. This example process emphasizes
the need to understand the underlying model before passing
judgement on a spectral estimation method.

This tutorial is divided into five sections. Section II is the
largest section. It contains a tutorial review of all the methods
considered in this paper. Section III provides a summary table
and illustration that highlights and compares the various mod-
ern spectral estimation methods. Section IV briefly examines
other application areas that utilize the spectral estimation
methods discussed in this paper.

A table of contents of these three sections is included below
to enable the reader to quickly locate topics of interest.

II. Review of Spectral Estimation Techniques

Spectral Density Definitions and Basics

Traditional Methods (Periodogram, Blackman-Tukey)

Modeling and Parameter Identification Approach

Rational Transfer Function Modeling Methods"

Autoregressive (AR) PSD Estimation

Moving Average (MA) PSD Estimation

Autoregressive Moving Average (ARMA) PSD
Estimation

Pisarenko Harmonic Decomposition (PHD)

Prony Energy Spectral Density Estimation

Prony Spectral Line Estimation

Maximum Likelihood Method (MLM)
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III. Summary of Techniques

A. Summary Table
B. Illustration of Each Spectral Estimate

IV. Other Applications of Spectral Estimation Methods
Introduction

Time Series Extrapolation and Interpolation
Prewhitening Filters

Bandwidth Compression

Spectral Smoothing

Beamforming

Lattice Filters
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No discussion of band-limited extrapolation techniques for
spectral estimation is presented here since a good tutorial is
already available [103]. The conclusion, Section V, makes
observations concerning trends in research and application of
modern spectral estimation.

II. REVIEW OF SPECTRAL ESTIMATION TECHNIQUES
A. Spectral Density Definitions and Basics

Traditional spectrum estimation, as currently implemented
using the FFT, is characterized by many tradeoffs in an effort
to produce statistically reliable spectral estimates. There are
tradeoffs in windowing, time-domain averaging, and frequency-
domain averaging of sampled data obtained from random pro-
cesses in order to balance the needs to reduce sidelobes, to
perform effective ensemble averaging, and to ensure adequate
spectral resolution. To summarize the basics of conventional
spectrum analysis, consider first the case of a deterministic
analog waveform x(t), that is a continuous function of time.
For generality, x(¢) will be considered complex-valued in this
paper. If x(¢) is absolute integrable, i.e., the signal energy
& is finite

8=f [x(2)]? dt < oo 2.1

then the continuous Fourier transform (CFT) X(f) of x(¢)
exists and is given by

X(fH)= f x(t) exp (-j2nft) dt. (2.2)

(Note that (2.1) is a sufficient, but not a necessary condition
for the existence of a Fourier transform [33].) The squared
modulus of the Fourier transform is often termed the spec-
trum, §(f), of x(¢),

S =1X()P. 2.3)
Parseval’s energy theorem, expressed as
j Ix(2)* dt =f |X(N)? df 2.4)

is a statement of the conservation of energy; the energy of the
time domain signal is equal to the energy of the frequency
domain transform, [ §(f)df. Thus §(f) is an energy spec-
tral density (ESD) in that it represents the distribution of
energy as a function of frequency. If the signal x(¢) is sampled
at equispaced intervals of At s to produce a discrete sequence
xp =x(nAt) for -0 <n <o, then the sampled sequence can
be represented as the product of the original time function
x(t) and an infinite set of equispaced Dirac delta functions
5(¢). The Fourier transform of this product may be written,
using distribution theory [33], as

X'(f)= f [ i x(8)6(t - nAt)At] exp (-j2nft) dt

= At i x, exp (-72nfnAt). (2.5)

Expression (2.5) corresponds to a rectangular integration ap-
proximation of (2.2); the factor At ensures conservation of
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integrated area between (2.2) and (2.5) as At > 0. Expression
(2.5) will be identical in value to the transform X (f) of (2.2)
over the interval - 1/(2Ar) < f< 1/(2Ar) Hz, as long as x (7) is
band limited and all frequency components are in this interval.
Thus the continuous energy spectral density

SN =1X"(N? (2.6)

for data sampled from a band-limited process is identical to
that of (2.3).

If a) the data sequence is available from only a finite time
window over n=0 to n=N - 1, and b) the transform is dis-
cretized also for NV values by taking samples at the frequencies
f=mAfform=0,1,--- N- 1 where Af = 1/NAt, then one
can develop the familiar discrete Fourier transform (DFT)
[33] from (2.5),2

N-1
X, = At Z Xp exp (-j2nmAfnAt)

n=0

N-1
= At Z Xp exp (-j2mmn/N)

n=o
form=0,--- N-1. (2.7)

Both (2.7) and its associated inverse transform are cyclic with
period N. Thus by using (2.7), we have forced a periodic ex-
tension to both the discretized data and the discretized trans-
form values, even though the original continuous data may not
have been periodic. A discrete ESD may then be defined as

S =1 X, 12 (2.8)

also for 0Sm <N - 1. Both the discrete 8m and the con-
tinuous S'( f) have been termed periodogram spectral estimates,
Note however that §,,, and S'(f), when evaluated at f = m/NAt
form=0,--+, N~ 1, do not yield identical values, Sn is, in
effect, a sampled version of a spectrum determined from the
convolution of X(f) with the transform of the rectangular
window that contains the data samples. Thus the discrete
spectrum §,,, based on a finite data set is a distorted version
of the continuous spectrum 8'(f) based on an infinite data set.

A different viewpoint must be taken when the process x(2) is
a wide sense stationary, stochastic process rather than a deter-
ministic, finite-energy waveform. The energy of such processes
are usually infinite, so that the quantity of interest is the power
(time average of energy) distribution with frequency. Also,
integrals such as (2.2) normally do not exist for a stochastic
process. For the case of stationary random processes, the
autocorrelation function

Ryx (1) = E[x(t + 7)x*(tN (2.9)

provides the basis for spectrum analysis, rather than the ran-
dom process x(¢) itself. The Wiener-Khinchin theorem relates
R xx(7) via the Fourier transform to ?(f), the PSD,

PN =f Ry x(1) exp (-j2nfT) dr. (2.10)

? The inverse transform is given by x,, = AfE%;%, Xm exp (+j2mmn/N)
and the energy theorem is

N-1 N-1
> Ixpl*Ar= > 1 Xmi®ar.
n=0 n=0

Tive Function
x(t)
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Fig. 2. Direct and indirect methods to obtain PSD (stationary and
ergodic properties assumed).

As a practical matter, one does not usually know the statistical
autocorrelation function. Thus an additional assumption often
made is that the random process is ergodic in the first and
second moments. This property permits the substitution of
time averages for ensemble averages. For an ergodic process,
then, the statistical autocorrelation function may be equated to

v id
. 1

Ry (1) = Tl:n:o 57 . x(t + 1)x*(¢t) dt. (2.11)

It is possible to show [107], [132], [187], with the use of

(2.11), that (2.10) may be equivalently expressed as
2

T
f x(t) exp (-j2nft) dt } (2.12)

, 1
?(f)-T!LnlE{zT ,

The expectation operator is required since the ergodic prop-
erty of R,,(7) does not couple through the Fourier transform;
that is, the limit in (2.12) without the expected value does not
converge in any statistical sense. Fig. 2 depicts the direct and
indirect approaches to obtain the PSD from the signal x(1),
based on the formal relationships (2.10), (2.1 1), and (2.12).

Difficulties may arise if (2.12) is applied to finite data sets
without regard to the expectation and limiting operations.
Statistically inconsistent (unstable) estimates result if no sta-
tistical averaging is performed; i.e., the variance of the PSD
estimate will not tend to zero as T increases without bound
[183].

B. Traditional Methods

Two spectral estimation techniques based on Fourier trans-
form operations have evolved. The PSD estimate based on the
indirect approach via an autocorrelation estimate was popular-
ized by Blackman and Tukey [14]. The other PSD estimate,
based on the direct approach via an FFT operation on the
data, is the one typically referred to as the periodogram.

With a finite data sequence, only a finite number of discrete
autocorrelation function values, or lags, may by estimated.
Blackman and Tukey proposed the spectral estimate

A M Al
PBT (F) = At Z Ryx(m) exp (-j2mfmAt)  (2.13)
n=-M

based on the available autocorrelation lag estimates I/Z\xx(m),
where -1/(2A1) < f< 1/(2At) and ~ denotesan estimate. This
spectral estimate is the discrete-time version of the Wiener—
Khinchin expression (2.10). An obvious companion autocor-
relation estimate, based on (2.11), is the unbiased estimator

N-m-1
*
Xn+mXn

Ryx(m) = s (2.14)

n=0



