Lanouages

ea Principles and Paradigms
o rw '

Al
Programming

o A \~

Allen Tucker
Rohert Noonan

Allen Tucker

Bowdoin College

Robert Noonan
College of William and Mary

Boston Burr Ridge, IL Dubuque, IA Madison, Wi New York San Francisco St. Louis

Bangkok Bogota Caracas
Milan Montreal New Delhi

Kuala Lumpur
Santiago Seoul

Lisbon London Madrid Mexico City
Singapore Sydney Taipei Toronto

McGraw-Hill Higher Education gz

A Division of The McGraw-Hill Companies
PROGRAMMING LANGUAGES: PRINCIPLES AND PARADIGMS

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the
Americas, New York, NY 10020. Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights
reserved. No part of this publication may be reproduced or distributed in any form or by any means,

or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill
Companies, Inc., including, but not limited to, in any network or other electronic storage or transmission,
or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers
outside the United States.

This book is printed on acid-free paper.

International 1234567890QPF/QPF0987654321
Domestic 234567890QPF/QPF09876543

ISBN 0-07-238111-6
ISBN 0-07-112280-X (ISE)

General manager: Thomas E. Casson

Publisher: Elizabeth A. Jones

Developmental editor: Emily J. Lupash

Executive marketing manager: John Wannemacher
Senior project manager: Jayne Klein

Production supervisor: Kara Kudronowicz
Coordinator of freelance design: Michelle D. Whitaker
Freelance cover/interior designer: Rokusek Design
Cover images: Photographed by Allen Tucker
Supplement producer: Brenda A. Ernzen

Media technology senior producer: Phillip Meek
Compositor: Interactive Composition Corporation
Typeface: 10/12 Times Roman

Printer: Quebecor World Fairfield, PA

Library of Congress Cataloging-in-Publication Data

Tucker, Allen B.
Programming languages : principles and paradigms / Allen B. Tucker, Robert E. Noonan.—Ist ed.
p. cm.
Includes index.
ISBN 0-07-238111-6 — ISBN 0-07-112280-X (ISE)
1. Programming languages (Electronic computers). I. Noonan, Robert E. II. Title.

QA76.7.T83 2002
005.13—dc21 2001044137
CIP

INTERNATIONAL EDITION ISBN 0-07-112280-X

Copyright © 2002. Exclusive rights by The McGraw-Hill Companies, Inc., for manufacture

and export. This book cannot be re-exported from the country to which it is sold by McGraw-Hill.
The International Edition is not available in North America.

www.mhhe.com

To Anatoly Sachenko and our friends at
Ternopil Academy of National Economy

Ternopil, Ukraine.
Allen Tucker

To Debbie and Paul.
Robert Noonan

Preface

The study of programming languages at the advanced undergraduate or graduate level
usually covers two main areas: principles of language design and two or three different
programming paradigms. Texts for this study tend to fall into either of two categories:
1) concept-based surveys of a wide range of language design topics and paradigms; and
2) interpreter-based treatments of the design principles presented in a functional lan-

guage.

APPROACH

This text attempts to unite the best features of these two approaches into a single and co-
herent framework. Like the interpreter-based texts, we include a rigorous, complete, and
hands-on treatment of the principles using a formal grammar, type system, and denota-
tional semantics, including an interpreter that implements the formal model. In contrast
with these texts, we use Java as the language of illustration rather than a functional lan-
guage. Like the concepts-based texts, this text presents and contrasts the major language
design topics and programming paradigms. Unlike the concepts-based texts, we hope to
cover this material in a more modern and coherent fashion.

Our approach is based on the belief that a formal treatment of syntax and semantics,
a consistent use of the mathematical notations learned in discrete mathematics, and a
hands-on treatment of the principles of language design are centrally important to the
study of programming languages. This approach is advocated, for instance, in the design
of the Programming Languages course in the Liberal Arts Model Curriculum [Walker
1996], and is also consistent with the recommendations of Computing Curricula 2001
[CC 2001]. The concepts-based texts seem to have foregone such rigor in recent years
in favor of surveying an increasingly wide variety of topics and languages. The topics
that should be central to a student’s understanding of language principles and para-
digms, such as the formal treatment of semantics, are usually presented late in these
texts, as one of many unrelated topics, and in a way that encourages instructors to skip
them altogether. We think that a study of programming languages principles should in-
tegrate these topics in a more compelling way.

With regard to Computing Curricula 2001 [CC2001], the material in this text cov-
ers all the topics (PL1 through PL11) in the Programming Languages section of the core
body of knowledge. It also covers other topics in that core body of knowledge, such as
event-driven and concurrent programming (PF6), memory management (OS5), and
functional and logic programming (IS). However, this text generally treats these topics
in greater depth than that suggested by Computing Curricula 2001.

Our treatment of syntax and semantics includes the use of BNF grammars and a
formal denotational approach to type systems and semantics. This approach is fully il-
lustrated, so that the theory can be explored by students with the aid of a Java interpreter

xiii

xiv

Preface

that directly implements the formal semantics. This approach allows students to study
all the dimensions of language design using the available formal tools: BNF grammars,
abstract syntax, recursive descent parsing, and functional definitions of type systems
and meaning. A small imperative language that we call “Jay” is used as a basis for illus-
trating the principles of language design and formal methods. Java is used throughout
Chapters 2-5 as the implementation language for exercising the syntax, type-checking,
and semantics functions of Jay.

Another point of departure from the concepts-based texts is that we have tried to
focus on a single language per paradigm. We believe that a deeper understanding of
each paradigm is more important than a survey of the many languages that support it.
Often the same problem is solved in each paradigm so that an instructor can better il-
lustrate the differences between the paradigms.

Java is ideally suited to supporting most of the topics in this text. It is a widely pop-
ular language, designed in a more principled way and containing a richer collection of
features than most of its predecessors. This versatility allows Java to be used in most of
the lab exercises and illustrations that accompany this text. So we use Java for the im-
perative, object-oriented, event-driven, and concurrent programming paradigms. We
use Scheme and Haskell for the functional paradigm, and Prolog for the logic program-
ming paradigm. Why two languages for functional programming? Scheme represents a
more traditional, widely used Lisp-like functional style which cannot be summarily
overlooked. However, Haskell contains several contemporary features—lazy evalua-
tion, list continuations, and a strong and versatile type system—that set it apart from the
traditional functional programming style, and thus merit its separate inclusion. As a
practical matter, we recommend that instructors cover only one of these two languages
in the functional programming part of the course.

We have extended the discussion of formal semantics into some of the paradigm
chapters as well. That is, the run-time semantics of Jay are reimplemented in the object-
oriented, functional, and logic programming chapters. This strategy provides more co-
herence for the book overall by working out a single substantial example in each of sev-
eral different programming styles.

Another thread that can be followed through the book is formal correctness of pro-
grams. Axiomatic correctness of imperative programs is treated in Chapter 3. Both the
chapter on object-oriented programming and the one on functional programming con-
tain a section on formal correctness.

Beyond the “standard” paradigms—imperative, object-oriented, functional, and
logic programming—this book identifies two other paradigms: event-driven program-
ming and concurrent programming.

Event-driven programming characterizes programs that respond to events arriving
in an unpredictable sequence, rather than controlling a priori the sequence in which
these events occur. The most dramatic current examples of the event-driven paradigm
are those programs written for Web-based interactions—online registration and elec-
tronic commerce applications, for example. But event-driven programming is a more
mature paradigm than these recent applications suggest. It also appears in programs that
are embedded in vehicles, operating systems, networks, and home alarm systems. We
are convinced that this paradigm is sufficiently mature and distinctive from the others
that it can no longer be ignored in any study of programming languages that presumes
to cover the major paradigms.

Preface XV

Concurrent programming is a sixth paradigm treated in this text. Parallelism is cen-
tral in modern computing, and is seeing increasing visibility at the programming lan-
guage and application level, especially in scientific computing. Combining this emer-
gence with traditional applications at the operating system and hardware levels,
concurrent programming now requires first-class attention in a programming languages
text. Thus, the book has a chapter on concurrent programming, including the related
concepts of parallelism and nondeterminism that occur at the systems and applications
levels.

COURSE ORGANIZATION

This text contains more material than can be covered in a one-semester course. Our ex-
perience shows that there are at least two different paths through the text for a 14-week
semester. There are definitely more, as the following diagram suggests:

Chapter:
] =—> 2 — 3* > 4% »
the Principles
- — =) Q%
the —
Key: Paradigms
—> = required
===» = optional r---»l()
* = partial coverage
*k = choose 2-3 of Chapters 7-11 L——»1]

The chapter sequence divides the course into two major parts: a study of the princi-
ples of programming languages (Chapters 1-6) and a study of two or three major para-
digms (separate from the imperative paradigm). Which paradigms to cover, of course,
will vary with the preferences of the instructor and the content of other courses in the
curriculum. For instance, if the curriculum regularly offers a course in parallel comput-
ing, Chapter 11 might not be covered in this course.

Some of the chapters are marked for partial coverage, again depending on local
conditions. Coverage of Chapter 3 (semantics) should include type systems and denota-
tional semantics, but operational and/or axiomatic semantics may be skipped. Some sec-
tions of Chapters 4 and 5 may also be skipped, depending on the preferences of the in-
structor for depth in the imperative paradigm. We do recommend that, as a minimum,
the complete syntax and semantics of Jay, along with the syntax and semantics of meth-
ods and parameters that appear in these chapters, not be excluded.

Moreover, coverage of Chapter 8 (functional programming) will normally include
either Scheme or Haskell and omit the other. We have intentionally designed the “para-
digms” chapters to be mutually independent. However, they do revisit topics in syntax

xvi Preface

Table 1

Two feasible
1-semester course
outlines

Bowdoin
Introduction 0.5
Syntax 2
Semantics 2
Imperative Programming 2
Memory Management 2
Object-oriented programming 1
Functional Programming 2
Logic Programming 2.5

Total weeks = 14

Introduction 0.5
Object-oriented programming 2
Syntax 1.5

Semantics 2

Imperative Programming 1.5
Exception Handling 1

Functional Programming 2
Event-driven Programming 2
Concurrent Programming 1
Total weeks = 13.5

and semantics that are introduced in the first four chapters, so these four should nor-
mally be covered early in the course.

Table 1 shows two sample course outlines that we have used at Bowdoin and
William and Mary while class-testing this material. The numbers beside the topics indi-
cate the approximate number of weeks in a semester devoted to each topic.

We note that Chapter 6 on Exception Handling is somewhat problematic. Logically
it belongs with Chapters 2—5 which cover the syntax and semantics of imperative lan-
guages. However, unlike these chapters, Chapter 6 is more conceptual in nature (like the
paradigm Chapters 7—-11) in that exceptions are not modeled formally. Also, because
exceptions in Java are objects, some knowledge of the object-oriented paradigm is
needed to present the material on exceptions. This option of covering Chapter 7 before
Chapter 6 is reflected in the William and Mary course outline.

PREREQUISITES

Knowledge of Java is normally a prerequisite for using this text, since Java is the lan-
guage of illustration in most chapters. However, at William and Mary we have used this
material in a course where students had only C++ and imperative programming experi-
ence. In this case, we covered the Java Tutorial appendix and the object-oriented pro-
gramming chapter immediately after Chapter 1, and Table 1 shows that it is a workable
alternative. In any event, we recommend that students in this course have access to a
good Java reference which will provide language-specific information beyond what ap-
pears in the Java Tutorial appendix.

On the other hand, we do expect that students in this course will bring some math-
ematical skills, as would be found in a discrete mathematics or discrete structures
course. We assume that students are familiar with the basic notions of functions, sets,
and logic, as well as some exposure to the basic ideas of recursion and proof. Such a
course, along with a data structures course (i.e., familiarity with linked lists, stacks, flex-
ible arrays, and hash tables), will normally be prerequisites for this type of program-
ming languages course. Notions and notations for functions, sets, logic, and related

Preface xvii

mathematical topics are used throughout this text. A summary of these notations appears
in Appendix A.

Familiarity with the Java realizations of these ideas is helpful, but not necessary
since they are explained as they are used in the text and are also summarized in Appen-
dix C. The software for this text can be used with any implementation of Java 1.1 or
higher. We have implemented the Java software for this book using both Sun’s JDK Java
and Metrowerks’ Codewarrior Java.

WEBSITE AND PEDAGOGICAL SUPPORT

We have also developed a considerable suite of software to accompany this text. You
should use the website www.mhhe.com/tucker as a source for downloading that soft-
ware and communicating with the authors as you teach the course. This website con-
tains the following specific pedagogical support materials:

* A complete Java implementation of the formal syntax, type system, and seman-
tics of Jay, as discussed in Chapters 1-4 and summarized in Appendix B. Spe-
cific references to this software are made in many examples and exercises
throughout the text.

* A set of tools for “animating” various syntactic and semantic functions that are
discussed in this text. Algorithm animation is an active area of research in com-
puter science education, and we encourage instructors to experiment with these
tools to help students visualize the semantic features of programming lan-
guages.

* A set of downloadable transparency masters for all figures and tables in the text.

= Answers to the exercises; available to instructors via a secure password.

ACKNOWLEDGMENTS

Many persons have helped guide us in the development of this text. James Lu was a key
collaborator in the early conceptualization of this text. Colleagues Bill Bynum at the
College of William and Mary and Laurie King at the College of the Holy Cross con-
tributed to Chapters 4 and 8, respectively. The students at Bowdoin and William and
Mary patiently worked through early versions of this material as we developed and
class-tested it. Notably, Doug Vail developed solutions to some of the more challenging
problems. We also appreciate the work of colleagues Eric Chown (Bowdoin) and Jack
Wileden (University of Massachusetts, Amherst) for class-testing a complete draft of
this text in Spring 2001, when they provided extensive and detailed suggestions. We
thank all of our reviewers:

Manuel E. Bermudez University of Florida

Sanjay Chawla University of Minnesota

Charles Dana California Polytechnic University, San Luis Obispo
Robert Van Engelen Florida State University

Arthur Fleck University of lowa

Peter N. Gabrovsky California State University, Northridge

Roger T. Hartley New Mexico State University

xviii

Preface

Alan Kaplan Clemson University

Srini Ramaswamy Tennessee Technological University
Jack C. Wileden University of Massachusetts, Amherst
Salih Yurttas Texas A&M University

for their careful readings and constructive recommendations throughout the develop-
ment of this text. Most of their recommendations have been incorporated in this final re-
vision, and the text is greatly improved by their collective insight.

Finally, the cover design uses several photographs of Western Ukrainian cathedrals,
which were taken in Spring 2001 by Allen Tucker. This design could convey the idea
that overlaying a rigorous language design methodology (the quilt pattern) on top of
many different languages (the cathedrals) can help dispel the idea that programming
languages are no more than a modern Tower of Babel. If this seems like an over-
interpretation, readers can simply enjoy the cover design for its sheer artistry!

Allen B. Tucker Robert E. Noonan
Bowdoin College College of William and Mary

Brief Confeﬁfs

10

Overview I
Syntax 19

Type Systems and
Semantics 49

Imperative Programming 3
Memory Management 119
Exception Handling 155

Object-Oriented
Programming _ 169

Functional Programming 205
Logic Programming 253

Event-Driven
Programming 291

Concurrent Programming 323

vii

1.1
112

1.3
1.4

1.5
1.6
1.7

2.1

2.2

2.3

Preface

Overview

Principles of Language Design
Programming Paradigms and Application
Domains

Pragmatic Considerations

A Brief History of

Programming Languages

Programming Language Qualities
What’s in a Name?

Goals of This Study

Exercises

Syntax

Formal Methods and
Language Processing
2.1.1 Backus-Naur Form (BNF)
2.1.2 BNF and Lexical Analysis
2.1.3 Lexical Analysis and
the Compiling Process
2.1.4 Regular Expressions and
the Lexical Analysis
Syntactic Analysis
2.2.1 Ambiguity
2.2.2 Variations on BNF
for Syntactic Analysis
2.2.3 Case Study: The Syntax of Java
Linking Syntax and Semantics
2.3.1 Abstract Syntax
2.3.2 Abstract Syntax Trees
2.3.3 Recursive Descent Parsing
Example: Jay—A Familiar Minilanguage
2.4.1 Concrete Syntax of Jay
2.4.2 Abstract Syntax of Jay

Exercises

Xiii

11
12
15
17
18

19

20
20
23

24

27

28
31

33
35
36
36
38
39

N S

3.2

3.3
3.4

3.5
3.6

4'1

4.2
4.3

Type Systems
and Semantics

Type Systems

3.1.1 Formalizing the Type System
3.1.2 Type Checking in Jay
Semantic Domains

and State Transformation

Operational Semantics

Axiomatic Semantics

3.4.1 Fundamental Concepts

3.4.2 Correctness of Factorial

3.4.3 Correctness of Fibonacci

3.4.4 Perspective

Denotational Semantics

Example: Semantics of Jay Assignments

and Expressions

3.6.1 Meaning of Assignments

3.6.2 Meaning of Arithmetic
Expressions

3.6.3 Implementing the
Semantic Functions

Exercises

Imperative
Programming

von Neumann Machines and
Imperative Programming
Naming and Variables
Elementary Types, Values,
and Expressions
4.3.1 Semantics
4.3.2 Elementary Types
in Real Languages
4.3.3 Expressions in Real Languages
4.3.4 Operator Overloading,
Conversion, and Casting

49

51
52
55

56
58

60
60
64
66
70

71

73
74

74

76
79

83

84
85

86
88

90
93

95

x Contents

4.4

4.5

4.6
4.7

5.3
5.4

5.5

5.7

4.3.5 Jay Extension: Floating Point
Numbers and Operators

Syntax and Semantics of Jay Statements

4.4.1 Syntax and Type Checking

4.4.2 Semantics

Syntax and Semantics of Statements

in Real Languages

4.5.1 For Loops

4.5.2 Do Statements

4.5.3 Switch (Case) Statements

4.5.4 Break and Continue Statements

Scope, Visibility, and Lifetime

Syntax and Type System for Methods

and Parameters

4.7.1 Concrete Syntax

4.7.2 Abstract Syntax

4.7.3 Static Type Checking

Exercises

Memory Management

The Overall Structure
of Run-Time Memory

Methods, Locals, Parameters, and the
Run-Time Stack
5.2.1 Program State I: Stack Allocation
5.2.2 Argument-Parameter Linkage
5.2.3 Semantics of Call and Return
Pointers
Arrays
5.4.1 Syntax and Type Checking

for Arrays
5.4.2 Array Allocation and Referencing

Structures
5.5.1 Syntax and Type Checking
for Structures

Semantics of Arrays and Structures

5.6.1 Program State II: Heap Allocation
5.6.2 Semantics of Arrays

5.6.3 Semantics of Structures

Memory Leaks and Garbage Collection
5.7.1 Widows and Orphans

5.7.2 Referencing Counting

5.7.3 Mark-Sweep

97
99
99
101

104
104
106
106
108

108

112
112
113
113

116

119

120

122
124
126
128

130
131

132
133

135

137

139
139
140
142
143
143
144
146

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1

7.2

7.3
7.4
75
7.6

8.1
8.2

5.7.4 Copy Collection
5.7.5 Garbage Collection Strategies
in Java

Exercises

Exception Handling

Traditional Techniques

Model

Exceptions in Java

Example: Missing Argument
Example: Invalid Input

Example: Throwing an Exception
An Assertion Class

Exercises

Object-Oriented
Programming
Data Abstraction and
Modular Programming

The Object-Oriented Model

7.2.1 Basic Concepts

7.2.2 Initialization of Objects

7.2.3 Inheritance

7.2.4 Abstract Classes

7.2.5 Interfaces

7.2.6 Polymorphism and Late Binding

Example: Expression Evaluation
Example: Concordance
Example: Backtracking
Correctness

Exercises

Functional
Programming

Functions and the Lambda Calculus
Scheme: An Overview

8.2.1 Expressions

8.2.2 Expressions Evaluation
8.2.3 Lists

8.2.4 Elementary Values

148

150
151

155

156
158
159
162
164
165
166
168

169

170
175
176
179
180
182
183
184
185
190
193
200
202

205

206
210
211
212
212
215

8.3
8.4

8.5
8.6

8.7

9.2

9.3
9.4

9.5

8.2.5 Control Flow

8.2.6 Defining Functions
8.2.7 Let Expressions
Debugging

Example: Scheme Applications
8.4.1 Formal Semantics of Jay
8.4.2 Symbolic Differentiation
8.4.3 Eight Queens

Program Correctness

Advances in Functional
Programming: Haskell

8.6.1 Expressions

8.6.2 Lists and List Comprehensions
8.6.3 Elementary Types and Values
8.6.4 Control Flow

8.6.5 Defining Functions

8.6.6 Tuples

Example: Haskell Applications
8.7.1 Semantics of Jay
8.7.2 Program Correctness

Exercises

Logic Programming
Logic, Predicates, and Horn Clauses

9.1.1 Horn Clauses
9.1.2 Resolution and Unification

Prolog: Facts, Variables, and Queries

9.2.1 Loading and Executing Code

9.2.2 Unification, Evaluation Order,
and Backtracking

9.2.3 Database Searching—The
Family Tree

Lists

Practical Aspects of Prolog
9.4.1 Tracing
9.4.2 The Cut and Negation
9.4.3 The is, not,
and Other Operators
9.4.4 The assert Function
Example: Prolog Applications
9.5.1 Symbolic Differentiation
9.5.2 Solving Word Puzzles
9.5.3 Natural Language Processing

215
216
219
220
221
221
225
227
231

233
233
235
237
238
238
242

243
243
246

248

253

254
257
259
259
261

262

263
265
267

267
268

270
271
272
272
273
274

9.6

10

10.1
10.2

10.3
10.4

10.5
10.6

10.7

11

11.1
11.2
11.3
11.4
11.5
11.6

Contents

9.5.4 Syntax of Jay
9.5.5 Semantics of Jay

Constraint Logic Programming
Exercises

Event-Driven
Programming

Foundations: The Event Model
The Event-Driven
Programming Paradigm
Applets
Event Handling
10.4.1 Mouse Clicks
10.4.2 Mouse Motion
10.4.3 Buttons
10.4.4 Labels, TextAreas,
and TextFields
10.4.5 Choices
Example: A Simple GUI Interface
Example: Event-Driven
Interactive Games
10.6.1 Tic-Tac-Toe
10.6.2 The Grid and Cell
Classes—Useful Assistants
10.6.3 Tic-Tac-Toe (continued)
10.6.4 Nim

Other Event-Driven
Programming Situations
10.7.1 ATM Machine

10.7.2 Home Security System

Exercises

Concurrent
Programming
Concepts

Communication
Deadlocks and Unfairness
Semaphores

Monitors

Java Threads

xi

278
280

283
284

291
292

293
296

297
297
299
300

301
303

304

310
310

311
313
316

317
317
318

320

323

324
326
328
328
331
332

xii Contents

11.7
11.8
11.9
11.10

Synchronization in Java
Example: Bouncing Balls
Example: Bounded Buffer
Example: Sieve of Eratosthenes

Exercises

Appendix A Summary of

A.l
A.2
A.3

Appendix B Language Jay—

B.2

B.3

B.4
B.5

Notations

Functions and Sets
Predicate Logic

Syntax and Semantics

A Formal
Description
Lexical Syntax of Jay

Remaining Concrete Syntax of Jay
B.2.1 EBNF Version
B.2.2 BNF Version

Abstract Syntax of Jay
B.3.1 Java Implementation

Type Checking Functions for Jay
Semantics of Jay

Appendix C Java Tutorial

C.1
C.2

Running Java Programs

Basic Java Syntax

C.2.1 The Standard Java Packages

C.2.2 Declarations

C.2.3 Data Types and Variable
Declarations

C.2.4 Variable Declarations

334
335
338
34]
343

347

347
348
349

351

351

351
351
352

353
353

356
360

367
367

367
368
369

369
370

C.3
C.4
C.5
C.6

C.7
C.8
c.9
C.10

C.2.5 Expressions and Operators

C.2.6 Statements

C.2.7 Loops and Conditionals

C.2.8 Switch and Break

C.2.9 Classes and Methods
(Functions and Procedures

Stream Input and Output
Example: Making An Application
Java Applets

Events and Listeners

C.6.1 Mouse Clicks

C.6.2 Mouse Motions

C.8.3 Buttons

C.6.4 Labels, TextAreas, and TextFields

C.6.5 Choices

C.6.6 Summary of Components and
Their Event Handlers

Colors
The Graphics Environment
Placement of Objects in the Frame

Key Java Classes

C.10.1 The Object Class

C.10.2 The Math Class

C.10.3 The Integer and Float Classes

C.10.4 The String Class

C.10.5 The Vector Class

C.10.6 The Hashtable Class

C.10.7 The PrintStream and
PrintWriter Classes

C.10.8 The Graphics Class

Bibliography

Index

370
371
372
373

373
374
377
378

381
381
382
383
384
386

387
388
389
389

390
390
391
391
392
393
394

394
395

397

401

“. .. the tools we are trying to use and the language we are using to express

or record our thoughts are the major determining factors determining what we
can think or express at all!”

Edsger W. Dijkstra [1972]

CHAPTER OUTLINE

1.1 PRINCIPLES OF LANGUAGE DESIGN 2

1.2 PROGRAMMING PARADIGMS AND
APPLICATION DOMAINS 4

1.3 PRAGMATIC CONSIDERATIONS
1.4 A BRIEF HISTORY OF

PROGRAMMING LANGUAGES 11
1.5 PROGRAMMING LANGUAGE

QUALITIES 12
1.6 WHAT'S IN A NAME? 15
1.7 GOALS OF THIS STUDY 17

Programming languages, like our “natural” languages, are designed to facilitate the
expression and communication of ideas between people. The ideas expressed in natural
languages cover the whole spectrum of human expression, including prose and poetry,
as well as a wide range of subject matter. However, programming languages differ
from natural languages in two important ways. First, they have a narrower expressive
domain, in that they facilitate only the communication of algorithmic ideas between

2

Chapter 1

Overview

1.1

people. Second, programming languages also enable the communication of algorithmic
ideas between people and computing machines. Thus the design of a programming lan-
guage must respond to different requirements than a natural language. We shall explore
these requirements and design alternatives for programming languages in this text.

In this study, we will see that there are many similarities between the features of
programming languages and the analogous features that characterize natural languages.
We will also see that there are fundamental differences, brought on by the special com-
putational environment in which a program must function. We explore these differences
in a fairly rigorous way. This study includes a formal treatment of the principles of pro-
gramming language design and a hands-on examination of the major programming
paradigms that these languages support.

The programming languages of tomorrow’s computers will be designed by those
who understand not only the features, strengths, and weaknesses of the programming
languages of today, but also the new application needs and programming potential that
can be offered by the computers of the future.

PRINCIPLES OF LANGUAGE DESIGN

Language designers need to have a basic vocabulary about language structure, meaning,
and other pragmatic features that aids in the understanding of how languages work with
computers to help programmers express algorithmic ideas. This vocabulary most natu-
rally expresses itself in the form of language design principles, many of which are
borrowed from linguistics and mathematics. The principles that underlie the design of
programming languages fall into the following categories:

¢ Syntax.

* Type systems and semantics.
e Memory management.

e Exception handling.

These areas are the principal topics of Chapters 2, 3, 5, and 6 respectively, and they
are briefly summarized below.

Syntax This design category helps us understand what constitutes a correctly written
program. That is, what is the grammar for writing programs in the language, and what
is the basic vocabulary of words and symbols that programmers use to form syntacti-
cally correct programs. Programming language designers have borrowed strongly from
the work of linguists in this area. We shall see that the syntactic structure of modern
programming languages is defined using the linguistic formalism called a context-free
grammar. This is done both for simplicity and clarity and to enable a more rigorous
treatment of the concepts.

Type Systems and Semantics This area addresses the types of values that programs can
manipulate and the meaning (semantics) of these programs. We shall see that type
systems and semantics are also best understood using a formal approach. When we

