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Random Processes in Physics and Finance



Preface

The name “Econophysics” has been used to denote the use of the mathemat-
ical techniques developed for the study of random processes in physical systems
to applications in the economic and financial worlds. Since a substantial number
of physicists are now employed in the financial arena or are doing research in
this area, it is appropriate to give a course that emphasizes and relates physical
applications to financial applications.

The course and text on Random Processes in Physics and Finance differs from
mathematical texts by emphasizing the origins of noise, as opposed to an analysis
of its transformation by linear and nonlinear devices. Of course, the latter enters
any analysis of measurements, but it is not the focus of this work.

The text opens with a chapter-long review of probability theory to refresh those
who have had an undergraduate course, and to establish a set of tools for those who
have not. Of course, this chapter can be regarded as an oxymoron since probability
includes random processes. But we restrict probability theory, in this chapter, to
the study of random events, as opposed to random processes, the latter being a
sequence of random events extended over a period of time.

It is intended, in this chapter, to raise the level of approach by demonstrating
the usefulness of delta functions. If an optical experimenter does his work with
lenses and mirrors, a theorist does it with delta functions and Green’s functions. In
the spirit of Mark Kac, we shall calculate the chi-squared distribution (important
in statistical decision making) with delta functions. The normalization condition
of the probability density in chi-square leads to a geometric result, namely, we
can calculate the volume of a sphere in n dimensions without ever transferring to
spherical coordinates.

The use of a delta function description permits us to sidestep the need for using
Lebesgue measure and Stieltjes integrals, greatly simplifying the mathematical
approach to random processes. The problems associated with Ito integrals used
both by mathematicians and financial analysts will be mentioned below. The prob-
ability chapter includes a section on what we call the first and second laws of
gambling.

Chapters 2 and 3 define random processes and provide examples of the most
important ones: Gaussian and Markovian processes, the latter including Brownian
motion. Chapter 4 provides the definition of a noise spectrum, and the Wiener—
Khinchine theorem relating this spectrum to the autocorrelation. Our point of view
here is to relate the abstract definition of spectrum to how a noise spectrum is
measured.
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Chapter 5 provides an introduction to thermal noise, which can be regarded
as ubiquitous. This chapter includes a review of the experimental evidence, the
thermodynamic derivation for Johnson noise, and the Nyquist derivation of the
spectrum of thermal noise. The latter touches on the problem of how to handle
zero-point noise in the quantum case. The zero-frequency Nyquist noise is shown
to be precisely equivalent to the Einstein relation (between diffusion and mobility).

Chapter 6 provides an elementary introduction to shot noise, which is as ubig-
uitous as thermal noise. Shot noise is related to discrete random events, which, in
general, are neither Gaussian nor Markovian.

Chapters 7-10 constitute the development of the tools of random processes.

Chapter 7 provides in its first section a summary of all results concerning the
fluctuation—dissipation theorem needed to understand many aspects of noisy sys-
tems. The proof, which can be omitted for many readers, is a succinct one in
density matrix language, with a review of the latter provided for those who wish
to follow the proof.

Thermal noise and Gaussian noise sources combine to create a category of
Markovian processes known as Fokker-Planck processes. A serious discussion of
Fokker—Planck processes is presented in Chapter 8 that includes generation recom-
bination processes, linearly damped processes, Doob’s theorem, and multivariable
processes.

Just as Fokker-Planck processes are a generalization of thermal noise, Langevin
processes constitute a generalization of shot noise, and a detailed description is
given in Chapter 9.

The Langevin treatment of the Fokker—Planck process and diffusion is given
in Chapter 10. The form of our Langevin equation is different from the sto-
chastic differential equation using Ito’s calculus lemma. The transform of our
Langevin equation obeys the ordinary calculus rule, hence, can be easily per-
formed and some misleadings can be avoided. The origin of the difference between
our approach and that using Ito’s lemma comes from the different definitions of the
stochastic integral.

Application of these tools contribute to the remainder of the book. These appli-
cations fall primarily into two categories: physical examples, and examples from
finance. And these applications can be pursued independently.

The physical application that required learning all these techniques was the
determination of the motion and noise (line-width) of self-sustained oscillators
like lasers. When nonlinear terms are added to a linear system it usually adds
background noise of the convolution type, but it does not create a sharp line. The
question “Why is a laser line so narrow” (it can be as low as one cycle per second,
even when the laser frequency is of the order of 10! per second) is explained in
Chapter 11. It is shown that autonomous oscillators (those with no absolute time
origin) all behave like van der Pol oscillators, have narrow line—widths, and have
a behavior near threshold that is calculated exactly.
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Chapter 12 on noise in semiconductors (in homogeneous systems) can all be
treated by the Lax—Onsager “regression theorem”.

The random motion of particles in a turbid medium, due to multiple elastic scat-
tering, obeys the classic Boltzmann transport equation. In Chapter 13, the center
position and the diffusion behavior of an incident collimated beam into an infinite
uniform turbid medium are derived using an elementary analysis of the random
walk of photons in a turbid medium. In Chapter 14, the same problem is treated
based on cumulant expansion. An analytical expression for cumulants (defined in
Chapter 1) of the spatial distribution of particles at any angle and time, exact up to
an arbitrarily high order, is derived in an infinite uniform scattering medium. Up
to the second order, a Gaussian spatial distribution of solution of the Boltzmann
transport equation is obtained, with exact average center and exact half-width with
time.

Chapter 15 on the extraction of signals in a noisy, distorted environment has
applications in physics, finance and many other fields. These problems are ill-
posed and the solution is not unique. Methods for treating such problems are
discussed.

Having developed the tools for dealing with physical systems, we learned that
the Fokker—Planck process is the one used by Black and Scholes to calculate the
value of options and derivatives. Although there are serious limitations to the
Black—Scholes method, it created a revolution because there were no earlier meth-
ods to determine the values of options and derivatives. We shall see how hedging
strategies that lead to a riskless portfolio have been developed based on the Black—
Scholes ideas. Thus financial applications, such as arbitrage, based on this method
are easy to handle after we have defined forward contracts, futures and put and call
options in Chapter 16.

The finance literature expends a significant effort on teaching and using Ito
integrals (integrals over the time of a stochastic process). This effort is easily cir-
cumvented by redefining the stochastic integral by a method that is correct for
processes with nonzero correlation times, and then approaching the limit in which
the correlation time goes to zero (the Brownian motion limit). The limiting result
that follows from our iterative procedure, disagrees with the Ito definition of sto-
chastic integral, and agrees with the Stratanovich definition. It is also less likely to
be misleading as conflicting results were present in John Hull’s book on Options,
Futures and Other Derivative Securities.

In Chapter 17 we turn to methods that apply to economic time series and other
forms including microwave devices and global warming. How can the spectrum of
economic time series be evaluated to detect and separate seasonal and long term
trends? Can one devise a trading strategy using this information?

How can one determine the presence of a long term trend such as global warm-
ing from climate statistics? Why are these results sensitive to the choice of year
from solar year, sidereal year, equatorial year, etc. Which one is best? The most
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careful study of such time series by David J. Thomson will be reviewed. For exam-
ple, studies of global warming are sensitive to whether one uses the solar year,
sidereal year, the equatorial year or any of several additional choices!

This book is based on a course on Random Processes in Physics and Finance
taught in the City College of City University of New York to students in physics
who have had a first course in “Mathematical Methods”. Students in engineering
and economics who have had comparable mathematical training should also be
capable of coping with the text. A review/summary is given of an undergraduate
course in probability. This also includes an appendix on delta functions, and a fair
number of examples involving discrete and continuous random variables.



A note from co-authors
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1

Review of probability

Introductory remarks

The purpose of this chapter is to provide a review of the concepts of probability
for use in our later discussion of random processes. Students who have not had
an undergraduate probability course may find it useful to have some collateral
references to accompany our necessarily brief summary.

Bernstein (1998) provides a delightful historical popularization of the ideas of
probability from the introduction of Arabic numbers, to the start of probability
with de Mere’s dice problem, to census statistics, to actuarial problems, and the
use of probability in the assessment of risk in the stock market. Why was the book
titled Against the Gods ? Because there was no need for probability in making
decisions if actions are determined by the gods, it took the Renaissance period
before the world was ready for probability.

An excellent recent undergraduate introduction to probability is given by Ham-
ming (1991). The epic work of Feller (1957) is not, as its title suggests, an
introduction, but a two-volume treatise on both the fundamentals and applications
of probability theory. It includes a large number of interesting solved problems.
A review of the basic ideas of probability is given by E. T. Jaynes (1958). A
brief overview of the frequency ratio approach to probability of von Mises, the
axiomatic approach of Kolmogorov, and the subjective approach of Jeffreys is
presented below.

1.1 Meaning of probability

The definition of probability has been (and still is) the subject of controversy. We
shall mention, briefly, three approaches.

1.1.1 Frequency ratio definition

R. von Mises (1937) introduced a definition based on the assumed existence of a
limit of the ratio of successes .S to the total number of trials /V:

S # of successes
Py =—="1"""""" 1.1
N N # of trials (-
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If the limit exists:

lim Py = P = probability of a success, (1.2)
N—oo0

it is regarded as the definition of the probability of success. One can object that
this definition is meaningless since the limit does not exist, in the ordinary sense,
that for any ¢ there exists an NV such that for all M > N, |Py — P| < e. This
limit will exist, however, in a probability sense; namely, the probability that these
inequalities will fail can be made arbitrarily small. The Chebycheff inequality of
Eq. (1.32) is an example of a proof that the probability of a deviation will become
arbitrarily small for large deviations. What is the proper statement for the definition
of probability obtained as a “limit” of ratios in a large series of trials?

1.1.2 A priori mathematical approach (Kolmogorov)

Kolmogorov (1950) introduced an axiomatic approach based on set theory. The
Kolmogorov approach assumes that there is some fundamental set of events whose
probabilities are known, e.g., the six sides of a die are assumed equally likely to
appear on top. More complicated events, like those involving the tossing of a pair
of dice, can be computed by rules of combining the more elementary events.

For variables that can take on continuous values, Kolmogorov introduces set
theory and assigns to the probability, p, the ratio between the measure of the set
of successful events and the measure of the set of all possible events. This is a
formal procedure and begs the question of how to determine the elementary events
that have equal probabilities. In statistical mechanics, for example, it is customary
to assume a measure that is uniform in phase space. But this statement applies to
phase space in Cartesian coordinates, not, for example in spherical coordinates.
There is good reason, based on how discrete quantum states are distributed, to
favor this choice. But there is no guide in the Kolmogorov approach to probability
theory for making such a choice.

The rigorous axiomatic approach of Kolmogorov raised probability to the level
of a fully acceptable branch of mathematics which we shall call mathematical
probability. A major contribution to mathematical probability was made by Doob
(1953) in his book on Stochastic Processes and his rigorous treatment of Brownian
motion. But mathematical probability should be regarded as a subdivision of prob-
ability theory which includes consideration of how the underlying probabilities
should be determined.

Because ideal Brownian motion involves white noise (a flat spectrum up to
infinite frequencies) sample processes are continuous but not differentiable. This
problem provides a stage on which mathematicians can display their virtuosity in
set theory and Lebesgue integration. When Black and Scholes (1973) introduced
a model for prices of stock in which the logarithm of the stock price executes a
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Brownian motion, it supplied the first tool that could be used to price stock (and
other) options. This resulted in a Nobel Prize, a movement of mathematicians (and
physicists) into the area of mathematical finance theory and a series of books and
courses in which business administration students were coerced into learning set
and Lebesgue integration theory. This was believed necessary because integrals
over Brownian motion variables could not be done by the traditional Riemann
method as the limit of a sum of terms each of which is a product of a function
evaluation and an interval. The difficulty is that with pure Brownian motion the
result depends on where in the interval the function must be evaluated. Ito (1951)
chose to define a stochastic integral by evaluating the function at the beginning of
the interval. This was accompanied by a set of rules known as the Ito calculus.

Mathematical probability describes the rules of computation for compound
events provided that the primitive probabilities are known. In discrete cases like
the rolling of dice there are natural choices (like giving each side of the die equal
probability). In the case of continuous variables, the choice is not always clear, and
this leads to paradoxes. See for example Bertrand’s paradox in Appendix B of this
chapter. Feller (1957) therefore makes the logical choice of splitting his book into
two volumes the first of which deals with discrete cases. The hard work of dealing
with continuous variables is postponed until the second volume.

What “mathematical probability” omits is a discussion of how contact must be
made with reality to determine a model that yields the correct measure for each
set in the continuous case. The Ito model makes one arbitrary choice. Stratonovich
(1963) chooses not the left hand point of the interval, but an average over the left
and right hand points. These two procedures give different values to a stochastic
integral. Both are arbitrary.

As a physicist, I (Lax) argue that white noise leads to difficulties because the
integrated spectrum, or total energy, diverges. In a real system the spectrum can be
nearly flat over a wide range but it must go to zero eventually to yield a finite
energy. For real signals, first derivatives exist, the ordinary Riemann calculus
works in the sense that the limiting result is insensitive to where in the interval
the function is evaluated. Thus the Ito calculus can be avoided. One can obtain the
correct evaluation at each stage, and then approach the limit in which the spectrum
becomes flat at infinity. We shall see in Chapters 10 and 16 that this limiting result
disagrees with Ito’s and provides the appropriate result for the ideal Brownian
limit.

1.1.3 Subjective probability

Jeftreys (1957) describes subjective probability in his book on Scientific Inference.
One is forced in life to assign probabilities to events where the event may occur
only once, so the frequency ratio can not be used. Also, there may be no obvious
elementary events with equal probabilities, e.g. (1) what is the probability that



