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Preface

Signal processing and systems science are the cornerstones of a large number
of scientific and technical activities. For example, it is impossible to have any
understanding of communication techniques without a background in signals and
systems. This is especially so in our "communication century".

The purpose of this work is to cover in three volumes a field stretching from
the basic principles right up to research problems. In other words, our ambition
is to help a novice in the subject to become a specialist in the field of signal
processing. This journey obviously needs time and effort, and we will describe
its various stages.

The first volume is devoted to deterministic signals, and provides the basic
tools for describing continuous-time and discrete-time signals and systems. It
corresponds largely to undergraduate level, and a knowledge of the topics it treats
is absolutely indispensable for any student of electrical engineering. The second
volume introduces the concept of stochastic signals and corresponds to the
beginning of graduate studies. It is possible to work in electronics without a
knowledge of stochastic processes, but this knowledge is necessary as soon as we
wish to understand noise and fluctuation problems, which almost always appear
at the limit of the performance of a system. The third volume introduces the
reader to some research fields and, as this area is very broad, the topics chosen are
those which correspond to the main interests of the author.

This work is neither the first nor the last in its field. As there are many
other possible approaches to the presentation of this material, we will try to
explain our philosophy. It results from long experience in the teaching of these
subjects at various levels.

Let us begin by mentioning the spirit of concision. In its present form this
first volume is a revised version of a French book entitled "Eléments de théorie
du signal", the ambition of which was to cover the contents of the present
volumes 1 and 2 in less than a hundred pages. It was of course a challenge and,
although this version is much longer, the spirit remains the same. Our
fundamental teaching philosophy is that details are confusing if the basic
principles are not clearly presented. This explains the title of the book.

At this point we must consider the role of mathematics in signal theory. It
is clear that a good understanding of the material covered needs a priori a sound
knowledge of basic calculus such as integration derivation and the principle of
functions of complex variables. However, the question is more complex. It is
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often thought that signal theory is just a particular field of mathematics, and I am
sometimes asked by my students whether this is the case. The answer is clearly
no. We do not present mathematical concepts for their own sake, but we use
these concepts to help us make a clear description of signals and systems. The
concept of frequency, for example, so fundamental to everyday life, is strictly in
relation to Fourier transformation, which can be presented as a purely
mathematical theory. The question appears particularly critical when using
distributions. We have decided not to cover completely the subject of
distribution theory which is the rigorous framework for the description of the
Dirac impulse signal. This would have been too long to justify the few
operations given in the texc.

The understanding of this field requires the active cooperation of the reader.
In order to help him, problems are presented at the end of each chapter. Some of
these are elementary whilc others are deduced from recent research work and need
more attention.

Finally, let us present some comments on the actual content. Paradoxically,
the first chapter contains the subject matter of the whole book, and we usually
spend many hours lecturing on this material. It introduces the basic idea of the
representation of signals in connection with linear filtering. Everything that
follows illustrates these ideas. We have also learnt after long practice in teaching
that the transition from continuous-time to discrete-time signals is very difficult
to grasp. For this reason an entire chapter is devoted to this question, and the
origin, interpretation and consequences of the sampling theorem are analyzed in
detail. Although the material covered may be classical, our objective was also to
reflect recent advances in the field. An example of this is the theory of lattice
filters, which illustrates very clearly the concept of dynamical filters and is
introduced even at undergraduate level. Similarly many questions concerning
dynamical filters are directly connected to properties of polynomials and rational
functions. We have not hesitated to present the most fundamental properties
both in the text and in the appendices. Lastly, we give very explicit and simple
presentations of stability criteria, the origins of which are given in more detail in
the appendices.

This volume is the result of many years of teaching and some points are the
result of questions put by students, who thus become anonymous co-authors. I
should like to extend to them a global acknowledgment for their help.

However, many colleagues at the Laboratoire des Signauv ~t Systémes have
made a direct contribution to the clarification of various questions concerning
both the content of this book and its material realization. I am particularly
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indebted to C. Bendjaballah, D. Claude, B. Lumeau and O. Macchi for
enlightening discussions and material help.

Lastly I would particularly like to thank Mrs. Eve Salinas for her
contribution to the English version and to the material realization of the text.
She played simultaneously the role of editor and typesetter in discussions
concerning the structure of the text and in the typing of complex equations. It
was a privilege for me to benefit from her cooperation.

Bernard Picinbono
Université de Paris-Sud, France
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Chapter 1

Introduction to Signals and Systems

1.1 The concept of signals

In the general spirit of this book, we will not spend a lot of time defining
the concepts of signals and systems precisely and axiomatically. Roughly
speaking, a signal is a function of a number of parameters, one of which is
usually time, and in our context a system is defined by its action on signals.
This action is a particular example of signal processing, an expression describing
a broad scientific field to which this book is only an elementary introduction.
The term signal processing indicates that signals and systems are strongly
interconnected, and it is in general difficult to discuss signals without introducin g
the systems for which they are used. For example, as described in more detail
below, it is the practical importance of time-invariant linear filters which
introduces the corresponding importance of the Fourier or Laplace representation
of signals. Many other examples will be given throughout this text.

There are many types of signals, and from the outset it is worth introducing
some properties which enable them to be classified. The most general example of
the type of signal used in this book can be written in the form

y=shkx;ol (1.1

In this expression the parameter x is a vector, generally complex, of
dimension m, and y is a complex vector of dimension n. The symbol @
implies that the signal can also be random, or stochastic. This is discussed in
more detail later. If @ is fixed, the signal becomes deterministic. Signals like
(1.1) are important for describing vector fields, for example, but we can
immediately simplify the structure by assuming that x is a real scalar. Then
(1.1) becomes

y=slt ;o) (1.2)

where the parameter ¢ is usually the time. Furthermore, it is frequently assumed
that y is one dimensional, and so the signal becomes a scalar function of time.
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Even with this simplification, four situations can be considered as a result of the
dichotomy of the following properties.

(a) The parameter ¢ can be continuous or discrete. This introduces the concept
of continuous-time (CT) or discrete-time (DT) signals. This has no relation to a
philosophical discussion on the concept of time. In signal problems, DT is a
consequence of a very important operation called sampling. In the sampling
procedure some points in time are selected and the DT signal is defined by the
values of the signal at these times.

(b) The value of the signal can be continuous or discrete. The operation
which transforms a continuous value into a discrete value is called quantization.
Even if it is not completely sanctioned by use, the term digital signal refers to a
DT signal with discrete values.

We now present some examples.

Example 1.1 Unit step signals The CT unit step signal u(¢) is
defined by

u(®)=0fort<0 and u(r)=1fort>0 (1.3)
For ¢ = 0 this signal has no definite value but, for reasons discussed later, it is
convenient to take u(0) = 1/2.
In the DT case this signal is a sequence of numbers u[n], where n is an
integer, defined by
uln]=0forn<0 and uln]=1forn>0 (1.4)

Sometimes the value u[0] = 1/2 is taken instead of u[0] = 1.

Example 1.2 Rectangular signals  Consider two times ¢, and ¢,
(t1 < t2) and the signal

M) 2 ue- 1) - (- 1y) (1.5)

From definition (1.3) with u(0) = 1/2 we see that this signal is unity for
fi<t<ty, 12fort=1tort=t and zero for all other times. This signal is
sometimes called the rectangular window and is widely used to isolate an
interesting part of a given signal.
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Example 1.3 Odd and even signals A signal x(¢) is odd or even if
it satisfies x() = x(— £) or x(f) = — x(- t) respectively. From the relation

x(1) = (1/2)(x(1) + x(- 0} + (1/2){x(2) - x(- 1)) (1.6)

we deduce that any arbitrary signal can be written as the sum of an odd
component and an even component.

Example 1.4 Exponential signals An exponential signal has the
form exp(st) in the CT case and z" in the DT case where s and z are arbitrary
complex numbers. If s = j2nrv = jw, where j2 = —1, we obtain the signal
exp(jwr) = cos(wt) + j sin(wr). In this expression v is the frequency and w the
angular frequency. A similar expression is obtained in the DT case if
z = exp(jw).

It is important to note that the signal u(r) exp(st) is not an exponential
signal. For reasons discussed later it is sometimes referred to as a causal
exponential signal.

1.2 The concept of a linear system

For the moment we envisage a system as a kind of black box which
transforms an input signal x(¢) into an output signal y(¢), where ¢ can be
continuous or discrete. There are many ways of describing a given system
precisely, but for our purposes we assume that a system is known when the
input-output relationship is well defined. This is sometimes refe.red to as an
external or black box description of systems. We are interested in the action of
the black box but not in its content which leads to the internal description. In
the case of a linear system the external description is

y0 = [ he, 6 x(6) do (1.7

in the CT case and

“oo

Yk = Y, hlk D xin (1.8)

l = —o0
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in the DT case. Note that k and / in (1.8) are integers, and we do not distinguish
below between the notations x[k], x or even x(k) for a DT signal. We do not
wish to discuss convergence problems here, so the integral and series given above
are assumed to be convergent. In this case it is obvious that the input—output
relationship is linear in the sense that the output corresponding to Aux; + A2x; is
Aiy1 + Az2y>. If we are working with complex signals, A; and A, can of course
also be complex.

Relationships (1.7) and (1.8) can be written symbolically in the form
¥(1) = S{x(D)} or ylk] = S(x[k]}, where § refers to the word "system". However,
it is important to avoid confusion with these expressions. Indeed, the relation
S{.) means a functional and not a function. More precisely, it is clear in 1.7)
that the value of the output y at time ¢ is calculated using the values of the input
at all instants 6. This means that the system has a memory effect. However, if
¥() is only a function of x() at the same instant of time, the system is said to be
instantaneous and the relation y(¢) = S{x(f)} is a simple function. Finally we
could examine the following problem: can any linear system be written in the
forms (1.7) and (1.8)? The answer is in the affirmative, but the proof is beyond
the scope of this chapter. The function 4 appearing in the previous equations is
called the impulse response of the linear system. In order to understand this
expression, let us first consider the DT case. Suppose that the input x[£] is
Slk — p] where 8] ] is the Kronecker delta signal defined by

Slkl=1ifk=0 and S[k]=0ifk 20 (1.9)
Then, from (1.8),
ylk] = hlk, p] (1.10)

This means that [k, p] is the output at time k generated by an "impulse" input
at time p. A similar procedure can be followed for the CT case, but now the
input is the Dirac function or Dirac distribution &) which is discussed in more
detail below. In this case h(z, s) is still the output at ¢ generated by an impulse
at s.

Among the set of all possible linear systems we will next consider the
subset of linear filters, which is particularly important in the following
discussion. For this purpose we will first define the concept of time invariance
of a system. Consider a system S generating the output ¥(#) when the input is
x(#). This system is said to be time invariant if, for any time translation 7
(positive or negative), the output generated by x(f — 7) is y(t — 7). In other



