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Preface

The present book is devoted to the development of difference schemes that
converge e-uniformly in the maximum norm for a representative class of sin-
gularly perturbed problems. 1t also deals with the justification of their conver-
gence, and surveys new directions and approaches developed recently, which
are of importance for further progress in numerical methods.

The book was intended to be an English translation of the Russian book
[138] (Shishkin G.1. (1992). Discrete Approximations of Singularly Perturbed
Elliptic and Parabolic Equations. Russian Academy of Sciences, Ural Section,
Ekaterinburg (in Russian)) that was initiated by John J.H. Miller. The trans-
lation was made by Zora Uzelac, but we decided not to publish this version of
the book. The very dense nature of this book, that allowed us to cover a large
class of singularly perturbed boundary value problems in little space, was too
difficult for most readers and also created problems in the implementation of
the results. Since the appearance of the book [138], new results and ideas
have appeared that are dealt with in the present book.

First, I would like to thank my teachers. My scientific interests in com-
putational mathematics were formed and matured under the influence of the
scientific schools of the Academicians of the Russian Academy of Science.
AM. Il'in, A.A. Samarskii, N.S. Bakhvalov, G.I. Marchuk and their influence
led to the appearance of my second doctoral thesis. This thesis became the
basis of [138], and is a continuing influence on my work.

It is with pleasure that 1 note the long-term and fruitful collaboration with
the Irish and Dutch mathematicians in the groups of J. Miller and P. Hemker.
This collaboration began in 1990, and yielded progress in the development of
numerical methods for problems with boundary layers, and led to new results
that were published in numerous joint papers and in two books [87] and [33].

The Russian scientists K.V. Emelianov, V.D. Liseikin, P.N. Vabishchevich,
V.B. Andreev, V.F. Butuzov, A.V. Gulin, I.G. Belukhina, N.V. Kopteva,
V.V. Shaidurov, B.M. Bagaev, E.D. Karepova, M.M. Lavrentiev, Jr, Yu.M.
Laevsky, A.l. Zadorin, A.D. Ljashko and 1.B. Badriev also influenced much of
the detail of the approaches initiated in [138].

The idea to translate into English the book [138] began during my collal-
oration over the last dozen years with mathematicians and their students,
namely, J.J.H. Miller, E. O’'Riordan, A.F. Hegarty, M. Stynes, A. Ansari (Ire-
land), P.W. Hemker, J. Maubach, P. Wesseling (the Netherlands), P.A. Farrell
(USA), F. Lisbona, C. Clavero, J.L. Gracia, J.C. Jorge (Spain), D. Creamer,
Lin Pin (Singapore), and through discussions of papers (based on ideas from

xiii
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[138]) on international conferences with, among others, I.P. Boglaev (New
Zealand), R.E. O’Malley, R.B. Kellogg (USA), L. Tobiska, H.-G. Roos, G.
Lube, T. Linf (Germany), Wang Song (Australia), L.G. Vulkov, I.A. Bra-
ianov (Bulgaria), R. Ciegis (Lithuania), and P.P. Matus (Belarus). Numerous
ideas from [138] were extended and published in many papers.

My thanks especially to L.P. Shishkina, my better half, and main assistant-
colleague and mathematician for participation as co-author in writing this
book, for enormous scientific and technical support. She has prepared the
present book including all stages: the clarification of results by numerous
discussions, preparation in LaTeX, the translation, compiling the Index, and
reviewing the page-proofs.

Significant assistance in the preparation of the English version of the present
book, in the translation from Russian-English to idiomatic English, was made
by M. Stynes (Part I, and fragments of Part II) and M. Mortell (the Preface
and the Introduction) to whom I would like to express my deepest thanks.

My thanks to our assistant-colleague 1.V. Tselishcheva for support in the
process of preparing the book, participation in the translation of some chapters
from Part II, of the Introduction, of the Survey, and many other tasks.

I am grateful for financial and material support (scientific books, computa-
tional technique) to the

Institute of Mathematics and Mechanics, Ural Branch of the Russian
Academy of Sciences, Yekaterinburg, Russia;

Institute for Numerical Computation and Analysis, Dublin (INCA),
Ireland;

Department of Mathematics at Trinity College Dublin, Ireland;

CWTI (Research Institute of the Stichting Mathematisch Centrum),
Amsterdam, the Netherlands;

School of Mathematical Sciences, Dublin City University, Ireland;

Department of Mathematics and Statistics at the University of
Limerick, Ireland;

National Research Institute for Mathematics and Computer Sci-
ence (NUS), Singapore;

School of Mathematical Sciences at the National University of Ire-
land in Cork (UCC), Ireland;

Boole Centre for Research in Informatics at the UCC, Ireland;

Mathematics Applications Consortium for Science and Industry
in Ireland (MACSI) under the Science Foundation Ireland (SFTI)
Mathematics Initiative; ‘

and to Chapman & Hall for friendly cooperation.
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Chapter 1

Introduction

1.1 The development of numerical methods for singularly per-
turbed problems

The wide use of computing techniques, combined with the demands of sci-
entific and technical practices, has stimulated the development of numerical
methods to a great extent, and in particular, methods for solving differen-
tial equations. The efficiency of such methods is governed by their accuracy,
simplicity in computing the discrete solution and also their relative insensiti-
vity to parameters in the problem. At present, numerical methods for solv-
ing partial differential equations, in particular, finite difference schemes, are
well developed for wide classes of boundary value problems (see, for example,
[79, 108, 100, 214, 91, 216]).

Among boundary value problems, a considerable class includes problems for
singularly perturbed equations, i.e., differential equations whose highest-order
derivatives are multiplied by a (perturbation) parameter . The perturbation
parameter £ may take arbitrary values in the open-closed interval (0, 1] (see,
e.g., [211, 210, 57, 94, 62]). Solutions of singularly perturbed problems, unlike
regular problems, have boundary and/or interior layers, that is, narrow sub-
domains specified by the parameter € on which the solutions vary by a finite
value.  The derivatives of the solution in these subdomains grow without
bound as ¢ tends to zero.

In the case of singularly perturbed problems, the use of numerical methods
developed for solving regular problems leads to errors in the solution that de-
pend on the value of the parameter . Errors of the numerical solution depend
on the distribution of mesh points and become small only when the effective
mesh-size in the layer is much less than the value of the parameter ¢ (see, e.g.,
[138, 87, 106, 33]). Such numerical methods turn out to be inapplicable for
singularly perturbed problems.

Due to this, there is an interest in the development of special numerical
methods where solution errors are independent of the parameter ¢ and de-
fined only by the number of nodes in the meshes used, i.e., numerical methods
(in particular, finite difference schemes) that converge e-uniformly. When
the solutions by such methods are e-uniformly convergent, we will call these
methods and solutions robust (as in [33]). At present, only several books
are devoted to the development of numerical methods for solving singularly



