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Preface

This book is intended to be a modern, but simple review for newcomers who
wish to cooperate with polymer experts in the field of dynamics, relaxation,
and thermodynamics: students, physicists, chemists, and material engineers.
As this field is rapidly growing the author tries to maintain a certain distance
from the matter. I thought about a cartographer making a coarsening in the
scale 1:200000 from a topographic map 1 : 25000 with large white and grey
spots. [ had to decide: which are the main points (phenomena in a spatial
scale 2 . . . 20nm), which are the main connections (relations in space and
time), and which are the details that may be dropped (many experimental
details and configurational details along the polymer chains). However many
basic results from related small-molecule systems are included to sharpen the
view to the particularities of polymers.

The necessary repetitions — I chose the inductive method - are used to offer
different views to the basic facts. Coarsening inquires a strong code. The
author stakes on the intuitive power of the reader to understand a coarse
situation best in space and time. It is a new paradigm to discuss relaxation
in terms of both time and space; till now this was reserved for scattering.
I often tried to make a rough, but consistent sketch even if the elements are
not always cleared up. Although some important results from proud theoreti-
cal physics are included, the main part is at a descriptive level — there are still
too many white spots in polymer science.

To keep a map readable only a small number of important aspects can be
included. The subject is therefore restricted to widespread, common materials
such as polyethylene (PE), polystyrene (PS) and similar polymers with
flexible chains. Their study is necessary for the business with functional and
special polymers, liquid crystalline polymers and the many other topics in
modern polymer science.

Some general aspects of relaxation and thermodynamics are also the
subject of the book. There are still basic problems e.g. with broad spectral
distributions, and with the subsystem concept in thermodynamics, especially
when the latter will be applied to small scales of order the correlation and
structure lengths. The central subject of the book is the glass transition. One
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can turn the tables: Polymers represent not only a complication compared to
the situation in simple liquids, but they mark, by their structure, some new
length scales in the 2 ... 20nm range that can be used to study spatial
aspects of thermodynamics and relaxation. The spatial scales are “spread”
and differentiated in polymers so that they can separately be felt by different
kinds of experiments. Additionally, the time scale can conveniently be con-
trolled by relatively small changes in temperature.

For all the molecular and experimental details the reader is referred to
standard books (e.g. Refs. 1-9). A descriptive introduction to the whole field
of polymer science is for instance Ref. 10. There are excellent encyclopedic
books or series, e.g. Refs. 11-14, and many journals that document the
progress, €.g. “Macromolecules”, “Polymer”, or “Journal of Polymer
Science”. In this book about 400 references to original papers and books are
included that can help the reader to find more information, also from the
references therein, and so on.

I wish to express my thanks to colleagues that supported this book by
reading the preliminary drafts of some chapters: Dr. M. Schulz and Dr. J.-U.
Sommer in Merseburg, by edition and typing the manuscript: Dr. K.
Schroter and Mrs. K. Herfurt, and by drawing the figures: Mrs. R. Dohnert;
and to Mrs. H. Hopcke, reader in the Akademie Verlag, for the good
collaboration.

Merseburg, March 29, 1992 E. Donth
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Introduction

In small-molecule liquids and ordinary glass-forming substances the charac-
teristic lengths of interest to structure and dynamics are of order one nano-
meter: next neighbors, network elements, and so on. Only in critical states
and in crystals are the interesting length scales much larger than 1 nm: critical
correlations, grain size, decay of disclination fields etc. Flexible polymers
with stable, covalently bonded chains, e.g. vinyl polymers, have, besides the
monomer scale (bond length /[, & 0.15m, van der Waals chain diameter
¢ ~ 0.5nm with a number density of order 10 monomeric units per nm?),
further length scales: coil radius R, ~ 20 nm monitored by chain length,
Kuhn step length [y ~ 1.5nm, entanglement spacing dg & 7nm, fold length
in crystal lamellas / ~ 10nm controlled by undercooling, and, in networks,
a length describing the mean distance between the crosslinks.

In so-called inorganic polymers (glasses), as a rule, the networks are in
dynamic equilibrium with bond breaking, and lengths 2 nm can only survive
under special conditions.

Dynamics in polymers is influenced by the new length scales. The different
scales of molecular movement are put in order by a general scaling principle:
the larger the typical length, the larger the typical relaxation time.

Dynamic scattering (X-ray, neutron, light) can resolve both length and
time scales, at least in principle.

Ordinary elastic scattering only resolves length scales, and relaxation only
resolves time or frequency scales. It is difficult to complete the information
without detailed models.

Equilibrium thermodynamic variables are integrals over these length
scales or time (frequency) scales, e.g.

kT(éiilop); = 1 — 4n f c(r)rdr, 0)
or
C, = kAS® = kjsz(w) dco (i)

where the symbols will be defined later, see Egs. 1.30, 2.54, and 7.1. As the
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general scaling principle is hidden by the integrations, it is difficult to see
which length scale is responsible for thermodynamic variables.

The problem of what are the “particles” for polymer thermodynamics is
also rather complex. In statistical considerations the “species”, e.g. the units
of placement on lattice sites, are often monomeric units or chain segments.
But the presumed carrier of identity that defines the Gibbs factorial v! in the
configuration integral is the whole chain. Moreover, the element for thermo-
dynamic analysis is the subsystem being, for the present, an intellectual
construction that can have different, but not too small size. The analysis
becomes rather difficult when this size is of order of the length scales listed
above.

In the First Part of this book, tools for a dynamic and a thermodynamic
treatment are described rather independently. Starting at Chap. 6, situations
are described where both branches are more and more interweaved, such as
in thermal glass transition, spinodal phase decomposition, and folded chain
crystallization.



I Fundamentals

To familiarize the reader with macromolecular chains we shall consider four
exercises about temporal and spatial aspects of Brownian motion.

(1) Fig. 1a shows a sketch of Perrin’s original observation for a Brownian
particle. The positions after constant time steps (A¢) are connected by straight
lines. A simplified analysis (Ref. 15) is based on Fig. 1b. The integers 0, 1, 2,
..., N are the time counts of a homogeneous time. [Of course, all symmetry
properties of time and space refer to the average statistical situation in the
materials described e.g. by distribution functions.]

Because of the space isotropy (i.e. no gradients) it is sufficient to consider
one dimension with coordinate x. Then x(¢,) is the position of the particle at
timet = ¢,i=0,1,2,..., N Puts = 0and x(0) = 0. Isotropy implies
x(f) = 0, 0r £ Ax; = 0, with Ax; = x(t;,) — x(t,_,). More interesting is the
mean square of x(¢),

() = Y(Ax) = Y AxAx; (1.1)

If At is large enough, then all succeeding x intervals are statistically indepen-
dent, in other words, there is no correlation between them,

AxAx; = 0,1 # J, (1.2)
and we have
X = Y (Ax,)? = NAX (1.3)

if all (Ax,)? are equivalent, e.g. equal in homogeneous space and time. There
is no stochastic length larger than the the particle diameter.
Defining a diffusion coefficient

D = 1AX’/At (1.4)
we obtain x? (1) = 2Dt, t = NAt; for 3 dimensions we have
(1) = 6D (1.5)

The square of mean Brownian shift is proportional to time. Consider a
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Fig. 1. Brownian motion.

a. Sketch of Perrin’s observation. b. Brownian motion x(¢) in one dimension (for Egs.
1.1 to 1.4). c. Diffusion of Brownian particles; y(x, ¢) density. d. Random walk
from « to w on a square lattice with step length b. e. Debye structure factor, approxi-
mation Eq. 1.15b dotted; x = ¢’R3,, ¢ scattering vector.

larger number of independent Brownian particles starting from x = 0 at
time t = 0. Then their concentration ¥ (r, ) is controlled by the diffusion
equation

DAY — 8ylot = 0 (1.6)
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with the Laplacian A = V?. This equation implies a constant particle
number, and the situation of Fig. 1¢ defines a current proportional to the
gradient (V).

(2) Fig. 1a also stands for a snapshot of a flexible chain when the length
b of segments is chosen to be so large that their orientations are statistically
independent. To avoid mathematical difficulties connected with the time-
space continuum (Wiener measure) the chain is considered to be a random
walk (Ref. 16) on a primitive cubic lattice with step length b, see Fig. 1d. We
follow the presentation of Ref. 4. Similar to the temporal case (1) we have

r = b +b+-+by = 3Yb,. (1.7)

Hence the mean square end-to-end distance of the chain, R,, is obtained
analogously to Eq. 1.5,

i

For large N the whole statistics is determined by many small independent
steps, which means by a Gaussian distribution. Consider many random
walks starting at r = 0. Be p(x, y, z) — compare it to Y (r) in (1) — the
corresponding probability density to find the chain end (N) atr = (x, y, 2).
Gaussian means

p(x, »,2) = p(x)-p(y)-pz) — N7 exp (—3r°/2Nb") (1.9)

or p(x) ~ N~ "2 exp (— x*/2x%) with x* = #?/3, see Eq. 1.8, and with the
measure dx.

A chain where Eq. 1.9 is also true for end-point distances of any (also
small) parts is called a Gauss chain. In that case one can calculate the radius
of gyration from Eq. 1.9, the result being R,,, = Ry/\/6.

Comparison of Egs. 1.3 and 1.8 gives an equivalence between the temporal
and spatial picture,

b* < 6DAt or R, < Dt. (1.10)

gyr

(3) Spatial correlations between the segments of a polymer chain in a
solvent can be obtained by elastic scattering experiments. For Gauss chains
one can calculate the correlations from Eq. 1.9. Expressed by a distribution
¢(r; — r;), we have from Eq. 1.9

_ 3 2 3(r; — j)2
or; — r) = (m) CXP<— Em) (1.11)
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with a mean value proportional to the half of the exponent denominator,
L = 1))y = 1 —JjIP, (1.12)
see also Eq. 1.8.

The scattering intensity of a volume with spatially isolated Gauss chain
coils is proportional to the structure factor generally defined by

S(q) = <exp (ig(r; — r))>. (1.13)

In this situation the spatial correlation i1s in a way measured by a
“standing” wave with scattering vector ¢ of magnitude

g = (4n/2) sin (8/2), (1.14)

where A is the wave length of the beam and 3 is the scattering angle corres-
ponding to a momentum exchange #q. The ensemble average (. . .> of Eq.
1.13 can be calculated for Gauss chains using the distribution ¢ of Eq. 1.11.
We obtain the Debye structure factor

0@ = 5 |, dn [\ dmexp (~ @@ 60 — m) = Nfo()
(1.15a)
with

1 — 2P
1—+—x/—3‘, X = ngyr- (115b)

The exact and the approximate Debye function are compared in Fig. le.
The decrease is “logarithmically broad”. This term will generally be used
when the interesting part of a function f(y) extends to one logarithmic
decade in y (i.e. a factor 1:10) or more. A nearly linear diagram is obtained
for S~! vs. ¢*>. When parameterized by polymer concentration it is called
Zimm plot and can be used to determine R,,,, for instance by extrapolation.

(4) The entropy AS linked with the possibilities of Fig. 1d is a thermo-
dynamic measure for the spatial correlation of a chain. One must count the
number (N ) of possible N-step ways from o and o in Fig. 1d. Then

AS = klny(N). (1.16)
It depends on the end-to-end distance r. Counting Gauss chains we obtain
3_,.2—
2R}

fo) = B 1+ 9=

AS(F) = AS() = ASO) — & (1.17)



